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PREFACE

The Program Committee for tile Twenty-first Lunar and PlanetaryScienceConference has
chosenthesecontributions ashaving the greatestpotential interest for the general public.
The papers in this collection havebeenwritten for general presentation,avoidingjargon
and unnecessarilycomplexterms.More technicalabstractswill be found in Lunar and

Planetary Science XJ(I.

For assistance during the conference, call the NASA Johnson Space Center News Center at

713-483-5111. Telephone numbers of the first author of each contribution will be found on

page iii. Feel free to call for more information.
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Ancient Ocean-l,and-Atmosphere Interactions on Mars:
Global Model and Geological Evidence

by

Victor R. Baker, Robert G. Strom, Steven K. Croft,

Virginia C. Gulick, Jeffrey S. Kargel, and Goro Komatsu
Department of Planetary Sciences
Lunar and Planetary Laboratory

University of Arizona
Tucson, Arizona 85721

An Exciting Discovery

Discoveries in science include both new information about nature and new ways of

understanding the information already in hand. We report here on a new understanding of global

environmental change on Mars achieved from study of existing data. This new view of climatic

change on Mars struck us in late December as we pondered a great variety of perplexing surface

features on the planet.

For many years, like other planetary geologists, we were puzzled by numerous enigmas

on Mars. Why did some portions of the surface seem to have very low erosion rates, while other

areas have forms indicating intense degradation by erosional processes? Why did numerous

valleys and channels form during the Martian past, when the modern climate is too cold and dry

for active water flow? How could water have moved to replenish ancient streams when the

modern atmosphere has less than 1/100 the pressure of that on Earth?

The answer to these and other Martian dilemmas is provided by temporary past episodes

of ocean formation. We find that vast areas of the northern lowland plains on this dry, desert

planet were sporadically inundated by huge quantities of water. Repealed formalion and dissipa-

tion of this ocean, which we name Oceanus Borealis, resulted in relatively warm, wet climatic

epochs that favored the development of glaciers in the southern hemisphere and highlands of

Mars. Rainfall and surface-water flow in valleys were dominant early in the planet's history.

l.ake formation, melting of permafrost, active landsliding, and erosion of old craters all seem to

have occurred during the temporary warm, wet (maritime) mode of Martian climate. When the

oceans gradually evaporated or froze, the planet returned to its cold, dry condition with its water

trapped as ground ice in underground permafrost. It is this cold, dry mode which presently

characterizes Mars.
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The last formation of Oceanus Borealis came relatively late in Martian history. Sediments

deposited by this ocean had been described by several investigators prior to our work. The

oceanic evidence was most impressively assembled by T. J. Parker, R. S. Saunders, and

D. M. Schneeberger of the Jet Propulsion Laboratory, California Institute of Technology.

Stimulated by their work and by a vast array of studies by many planetary geologists, we

developed the following global model of ocean formation on Mars.

Mars Climate Model

Models are theoretical simplifications of how scientists perceive the operation of phenom-

ena. Our model arose intuitively from experience with Martian phenomena and from hypothesiz-

ing the origin and consequences of an ocean.

During later Martian history huge concentrations of molten rock (magma) were concen-

trated at one local region of the planet, the Tharsis volcano area. Massive and rapid emplacement

of magma beneath this bulging hot spot melted huge amounts of ground ice, driving it into frac-

tures on the margins of the Tharsis bulge. The water burst on to the surface at great outflow

channels heading at these fractures. Driven by volcanic heat, the cataclysmic outburst floods of

water and mud carved immense, spectacular channels, tens of miles wide. The warm water

inundated the northern plains of Mars, vaporizing the north polar cap of carbon dioxide ice.

The cataclysmic ocean formation had an immediate climatic influence. Both water

(evaporated from the sea) and carbon dioxide (from the polar cap) are greenhouse gases. Just as

human burning of fossil fuels is causing a global warming of Earth, so the Martian floods

induced a cataclysmic warming. As Martian temperatures rose, other water, frozen in upland

permafrost, was released to flow into lakes or the Oceanus Borealis. The climate moved to its

maritime state, with precipitation possible.

During the late phase of ocean formation, much of the precipitation fell as snow.

Particularly near the south pole and in upland areas, the snow accumulated to thicknesses suffi-

cient to form ice. As the snow and ice built up, it flowed as glaciers. The geological evidence

indicates that the glaciers advanced and retreated, much the same as occurred in the Ice Ages of

Earth. Because the late Mars ocean was relatively short-lived, this Martian glacial epoch was also

very brief.

Oceanus Borealis was probably a persistent feature early in Mars history. At that time the

planet was experiencing a relatively high rate of impacting objects. The dense water and carbon
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dioxideatmosphereallowedprecipitationasrain, resultingin thewidespreadwdley networksof

the Martianuplands.However,waterwasbeinglostbecauseof dissociationin theupperatmo-

sphereof theplanet. The hydrogenwaslost to spacewhile theoxygencontributedto thered

color of theplanetby oxidizingvariousmaterials.Eventuallywaterlossandprecipitationof the

carbondioxide ascarbonaterock reducedtheatmosphericpressurebelow thegreenhouselevel

for maintainingtheocean.Most of thewaterwassequesteredinto thevery permeablerocksof

theplanetwhereit comprisedicein apermafrost.

The oceanwasableto reform much later in theplanet'shistory becauseof theTharsis

volcanismdescribedabove.This cataclysmicoceanwassmallerthantheoriginal becauseof the

waterlossby hydrogenescape.However,it wasbig enoughto temporarilymodify theclimate,

producingtheenigmasthathadbotheredusabouttheMartiansurface.

Importance

The above model has completely changed how we view Mars. Instead of a cold, dry

world with enigmatic features inconsistent with its modem climate, we now see a more earthlike

planet. During its early history Mars was very water-rich, and it seems to have had a watery

atmosphere. Unlike Earth, the rocks and landscapes of Mars' first billion years of history are

well preserved. Did life form in the early Martian ocean? If so, fossils of that life might be

present and available for discovery by a future geological exploratory mission. Oi_ Earth we have

little or no material left from that early period because of the active reworking of the planet's

surface. The stable Martian surface is a unique record of the same watery past that characterized

our own planet.

Mars and Earth are the only known planets on which water has moved in a dynamic cycle

from its reservoir in the ocean to rainfall, flowing rivers, and back to the sea. This same cycle,

the hydrological cycle, is the source and the maintainer of life on Earth. Might it have served as

the source for life on Mars as well? We may find the answer to the origin of life on Mars rather

than on Earth.

Science Issues

Sometimes science is viewed as a monolithic enterprise of computers, laboratory equip-

ment, and individual theorists. We forget that science is a group exercise in which people make

sense, a kind of common sense, out of the world in which they live.
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We feel we have found a way to make sense out of what seemed to be perplexing

problems of past environmental change on the planet Mars. The way that this has changed our

view gives hope that a similar sense can be achieved about the perplexing problems of future

environmental change on the planet Earth. Is there something in the existing information that we

are just not seeing? Can one simple idea give us the clue to how it all fits into a pattern?

We have a new confidence on how Mars works as a planet, how its water-related systems

have evolved through time. We need a similar confidence for Earth. Rather than idealized future

"scenarios" given to us by computers, we need an understanding of how the whole planet works.

If we can figure it out for a slightly smaller, slightly colder version of Earth known as Mars, that

process of common sense should allow us the same revelation about Earth and its global changes.

As the philosopher William Clifford once said of science, "... the truth at which it arrives is not

that which we can ideally contemplate without error, but that which we may act upon without

fear."



THE OBSERVATION OF MARS BY THE ISM INSTRUMENT

ON BOARD THE PHOBOS2 SPACECRAFT; J-P Bibring,

Y. Langevin, S. Erard, B. Gondet, O. Forni, P. Masson, C. Sotin and
A. Soufflot, Institut d'Astrophysique Spatiale, 91405 Orsay, France;
M. Combes, P. Drossart, T. Encrenaz, E. Lellouch and J. Rosenqvist,
DESPA, Observatoire de Meudon, France; V.I. Moroz, N. Sanko,

A.V. Grigoryef and Y.V. Nikolsky, IKI, Moscow, USSR

Abstract

ISM is a near-infrared imaging spectrometer, that operated on board
the soviet Phobos 2 spacecraft. It acquired 40,000 spectral images of Mars,
with a spatial resolution ranging from 5 to 30 km. It also observed Phobos
two times, from a distance of 200 km: the achieved resolution is .7 km. ISM

detected signatures of the major atmospheric and mineralogic constituents.
Concerning the surface, the major result is the high level of its heterogeneity,
on a scale close to the ISM resolution, observed for all properties: albedo,
colour, composition, degree of hydration of the soil.

Introduction

The Soviet Phobos 2 spacecraft remained in orbit around Mars from
early February up to March 25, 1989. The minimum distance from the
surface of Mars was less than 900 km during the first elliptical orbits, and
6300 km from the circular orbits. At the very end of the mission, the
spacecraft was tilted in order to point Phobos, the largest martian moon,
from a distance close to 200 km.

Our instrument, named ISM (Infrared SpectroMeter), is an infrared
imaging spectrometer operating from .8 to 3.2 micrometers (1,2). This
instrument, entirely conceived and manufactured in France, constitutes the
first ever flown imaging spectrometer for planetary observations. It consists
in a telescope 2.5 cm in diameter, providing a 12 arcmin field of view.
Converted into spatial resolution, the pixel size ranges from 5 to 30 km on
Mars, depending on the altitude of the spacecraft, and 0.7 km on Phobos.
The imaging capability was provided in the crosstrack direction by a
scanning mirror, moving by steps +20 ° away from the optical axis, and
downtrack by the motion of the spacecraft. As the orbit of the spacecraft was
equatorial, ISM was restricted to areas with latitude lower than 30 °.

The spectroscopic range was obtained with a grating used in the first
and second orders, separately focused onto two 64-pixel PbS arrays. The
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detector operational temperature was provided by means of a passive cooling
down to 200 K, monitored to 0.1 K. The signal/noise ratios achieved were
remarkable, higher than 1000 for typical integration times of one second,
over most of the spectral range.

The data set

ISM was first turned on two times from a low altitude, which
provided two high resolution tracks, 20 km large and 1650 km long. They
both are located close to the equator in the Tharsis region, crossing Pavonis
Mons, one of the main martian volcanoes. Most of the observations were then

performed from the circular orbit, when the spacecraft was three-axis

stabilized. Each image maps an area 400 x 3000 km 2 typically. Seven of
them are located in the westem hemisphere: most of Valles Marineris and all

Tharsis volcanoes are thus mapped, at least partially, including Olympus
Mons, the highest one (more than 25,000 meters in altitude). In the eastern
hemisphere, the old cratered terrains of Arabia Terra, as well as Isidis

Planitia and Syrtis Major, have also been imaged. Altogether, ISM has
sampled most major geological units, with the noticeable exception of the
polar caps, that could not been observed from the equatorial orbit.

On Mars 25, when the spacecraft pointed Phobos, ISM was turned on

two times. For the first observation, ISM acquired a track one pixel large
across more than half of the lighted Phobos hemisphere, close to its equator.

During the second observation, ISM mapped an area 20 x 20 km2,

constituted of more than 400 contiguous pixels. This infrared image
constitutes the first ever made of a solar system "small body": Phobos is
considered as a C-type asteroid captured by Mars. Results on Phobos are
presented elsewhere (3).

Results on the martian atmosphere,

Although the spectral resolution of ISM was not designed to resolve
the individual lines of gazeous species, the martian spectra exhibit the

enveloppes of the features associated to the main bands of CO2, by far the

major atmospheric constituent, as well as CO and H20 bands. Through the
CO2 band, we measure the total pressure. Consequently, its variation from

one pixel to the other is directly linked to the variation in altimetry. ISM has
thus the capability of providing altimetric maps, with a vertical resolution of
a few hundred meters. The CO/CO2 ratioes have been measured, in all
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regions where high volcanoes are located: along their slopes the total
pressure varies, which allows to monitor the CO relative abundance when the
CO2 varies.

Our data do not fit with those obtained from the ground, with a much
lower resolution. It is difficult to account for our data with a ratio constant

with altitude, except if we assume a very low value, close to 10 -4, which is at
least 5 times lower than observed from the Earth. If we take a value at zero

altitude matching the one deduced from ground-based observations, a large
CO depletion at high altitude is derived from our data. It might originate
from heterogeneous chemistry, likely to play a role in catylizing the CO + O
reaction onto aerosols. The H20/CO2 ratio has also been measured. It appears

constant, at a value close to 10-4, within the experimental uncertainties.

R_su.lts on the martian surface

The near-infrared spectra of Mars originate mainly from the

diffusion by the martian surface of the solar light. Two types of results can
thus be inferred. First, the intensity of the diffused light give a measurement
of the brightness of the surface (or its albedo), directly linked to global
surface properties. In addition, the presence of surface minerals which
absorb infrared radiation at given wavelengths give rise to absorption
features whose spectral position and intensities can be used to infer the
surface mineralogy, after appropriate laboratory simulations.

The infrared brightness of Mars appears to vary by very large factors
from place to place. For example, Isidis Planitia is about three times darker
than the surrounding plain. Similar contrasts are present between the canyon
and the plateau of Valles Marineris. In addition to these variations on a large
scale, small scale variations, on a kilometric scale, are clearly detected in our
images. They all originate from differences in surface composition. As a
general trend, dust deposits seem to be brighter, which enables to map their
surface distributions, as well as their variation with time.

It is clear that numerous regions are not covered by dust of uniform
composition. Large variations from one pixel to the other are present, in
particular in the spectral features corresponding to the main silicate content
and to the degree of hydration of the surface. The latter index is of particular
interest, as it is linked to the general problem of the water cycle on Mars.
Was liquid water stable, which would mean that the atmosphere was dense
enough to allow the partial pressure of water and its temperature to be
sufficiently high ? Are the ferric-rich minerals, responsible for the red
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colour of the soil, originating from their oxydization by water ? Do the
channels result from large flows of running water ? Are there sites where,
within the water, chemical reactions proceeded, leading to evolved organic
molecules ? Such questions can be partially answered by mapping the
hydration spectral band over Mars. ISM data show that all spectra exhibit an
intense band centered at 2.7 micrometers, that we attribute to water
molecules or OH radicals blocked within the matrices of the surface soils.

This indicates that hydration took place in the past. Furthermore, the
intensity of this feature varies spatially by large amounts, indicating that the

degree of hydration is not uniformely distributed over the martian surface.
In particular, there is a general trend of increase of hydration along the
slopes of the volcanoes. It might be the indication of hydration originating
from the volcanic activity, the magma being processed by the underlying

pemaafrost-rich layers before floading out of the volcanoes.

Fpture of ISM data reduction

The entire data set has been given to a number of selected groups in
the United States, in Italy and in DDR. Consequently, not only French and
Soviet Institutes are involved in the analyses. We have open our experiment
to cooperation with scientists from USGS at Flagstaff, from Brown
University at Providence, from Hawai University at Honolulu and from
Ames Research Center at Moffett Field, from Frascati and Roma, as well as

from East Berlin. It should improve the scientific return of this pioneering
experiment, which prepares the future exploration of Mars, by the
OMEGA/VIMS experiment on board the soviet Mars 94 mission, of the

Saturnian system, by the VIMS instrument on the CASSINI (NASA/ESA)
orbiter, and the nucleus of comet P/Koppf, which will be mapped by
VIMS/CRAF.(NASA).

References

(1)Bibring et al., Nature, 341, 6243, 591-592, 1989.
(2) Bibring et al., Proceedings of2Oth LPSC, 1990.
(3) Langevin et al., Lunar Planet. XXI, LPI,Houston,1990



OXYGEN ISOTOPIC COMPOSITIONS OF ORDINARY CHONDRITES AND THEIR
CHONDRULES; Robert N. Clayton 1,2, Toshiko K. Mayeda 1, Edward J. Olsen 3, and J.N.

Goswami 4. 1Enrico Fermi Institute, 2Departments of Chemistry and of the Geophysical Sciences,
University of Chicago, Chicago, IL 60637; 3Field Museum of Natural History, Chicago, IL 60605;
4physical Research Laboratory, Ahrnedabad 380 009, India.

The oxygen isotopic compositions of chondrites and their internal constituents (chondrules,
inclusions, xenoliths, matrix, etc.) are highly variable, and, in general, do not follow mass-dependent
fractionation patterns. They serve, therefore, as tracers of reservoir-reservoir interactions in the solar
nebula, and thus can be used to study the formation of chondrules and the processes by which they are

assembled into chondrites. Several regularities are well established: (1) three isotopically distinct
chondrule reservoirs exist, corresponding to ordinary, carbonaceous, and enstatite chondrites; (2) the
reservoir of carbonaceous chondrite chondrules is common to all sub-classes of carbonaceous

chondrites; (3) the reservoir of ordinary chondrite chondrules is common to all iron-groups of ordinary

chondrites; (4) whole-rock isotopic compositions of equilibrated H, L, and LL chondrites are different,
and follow an 160-mixing trend.

In the interpretation of the oxygen isotope data, several major problems remain unsolved: (1) do

the separate reservoirs for ordinary, carbonaceous, and enstatite chondrites represent major spatial or
temporal heterogeneides in the solar nebula? (2) What are the implications of isotopic mixing lines for
chondrule formation? (3)How are the H, L, LL whole-rock isotopic compositions established?

(4) What is the nature of UOC matrix? (5) What is the genetic relation of UOC to EOC?

Fig. 1 shows whole-rock isotopic data for 68 EOC falls. The three iron groups are resolved,
and their means define a slope-1 mixing line referred to as the Equilibrated Chondrite Line (ECL).
Fig. 2 shows isotopic data for 65 individual chondrules from ordinary chondrites (OC) and 53
chondrules from carbonaceous chondrites (CC). ECL is shown for reference; CCC is a least-squares fit
to the CC chondrule data, and is almost coincident with the CAI mixing fine. The combined CAI-CCC
line extends over a range of almost 50%0, and very likely represents interaction between an 160-rich
solid end-member near-40%¢ and an 160-poor nebular gas reservoir which lies near the extrapolation

of the mixing line toward the upper right. In contrast, the ordinary chondrite chondrule data span only
about 55'00, for a similar total number of samples. It is very difficult to construct a simple two-
component mixing model which gives such a limited spread of data. This is especially so when the
range in 5180 is comparable to the magnitude of the equilibrium gas-solid fractionation factor. The

problem is illustrated in Fig. 3, which shows schematically the consequences of gas-solid exchange
under such conditions. Point G is taken as the isotopic composition of an infinitely large gas reservoir.
Point E is the composition of solids in equilibrium with the gas at G. Points S1, $2, $3 represent the
compositions of various solids before exchange, assumed to lie on an 160 mixing line through G. The

lines S1-E, S2-E, S3-E show the trajectories followed in gas-solid exchange reactions, and illustrate
the expected spread of data for a set of incompletely equilibrated samples. The graph shows that short
mixing lines generated in this way do not have slopes near unity. In fact, short slope-one mixing lines
can only be formed by a special choice of compositions of starting materials. However, it can be
shown that an array such as that observed for ordinary chondrite chondrules can be formed by a series
of exchange events; i.e. multiple accretion and melting processes for each chondrule. The distinction
between CC chondrules and the OC chondrules is that the former have undergone much Icss processing
by multiple melting than the latter.

The OC chondrule data of Fig. 2 present a problem in understanding the whole-rock isotopic
composition of H-chondrites. Almost all the single chondrules have oxygen which is isotopically
heavier than mean H-chondrites. Material balance in H-chondrites is achieved only by inclusion of
160-rich cbondrules and fragments <250 lain in diameter. Fig. 4 shows the data on size-fractions of

Dhajala (H 3.8). Since H-chondrites contain a larger proportion of small chondrules than L- and LL-
chondrites, it is likely that the distinctive isotopic compositions of the three iron groups are a
consequence of a size-sorting of chondrules and fragments during accretion, with chondrules for all OC
being derived from a common pool.
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lsotopicallydistinctivematrixmaterialhasbeensoughtin severalOC. Nonehasbeenfound,
withthepossibleexceptionof ALH 77299, which contains "matrix lumps" which are isotopically light
[1]. It has not yet been shown with certainty that this material is not disturbed by Antarctic weathering.

Some UOC have whole-rock isotopic compositions which are within the range of EOC for the
same iron-group, especially H3 and L3 chondrites. LL3 chondrites, on the other hand, are all heavy-
isotope enriched, extending to the right of the ECL by up to 2_'_. Some of this effect might be due to
aqueous alteration on the parent body, as has been observed in Semarkona [2]. Neither chondrules [3]
nor matrix [4] in LL3 show the systematic effects evident in the whole-rocks. Some component not yet
sampled must cause the isotopic shift. Its future identification may resolve the genetic relationships
betweenUOC and EOC.

References: [1] G.C.A. 53, 2081 (1989); [21 E.P.S.L. 95, 187 (1989); [3] E.P.S.L. 65, 209
(1983); [4] Meteoritics 22, 395 (1987).
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LUNAR MARE BASALT FOUND AS METEORITE FROM ANTARCTICA

Department of Geological Sciences, Rutgers University, New Brunswick, NJ 08903

Tel. 201/932-3616 FAX 201/932-5312

PAUL H. WARREN

Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024-1567

Tel. 213/825-2015 FAX 213/206-3051

Meteorite collecting expeditions to the Elephant Moraine region of Antarctica have recov-

ered a sample of the lunar maria. The recovery of this meteorite, rich in mare basalt material, is a

major fred. Several lunar meteorites have been collected in Antarctica since 1979, but all the

previously identified finds are from the heavily-cratered, aluminum-rich highlands terrain that

constitutes most of the lunar crust. The maria are dark, iron-rich volcanic formations, roughly

analogous to the dominant type of rock in the oceanic crust of the Earth. Maria is the plural form

of mare; this adaptation from Latin originated with Galileo, who noted a topographical

resemblance to the Earth's seas. Maria axe relatively abundant on the Moon's nearside

hemisphere, which always faces the Earth, but they cover only 1/6 of the total lunar surface.

Indeed, by most estimates the maria represent less than 1% of the total volume of the lunar crust.

They appear to be very thin veneers of volcanic rock (basalt) covering parts of the older light

colored highlands (anorthosite) crust. Mare basalts are generally young, by lunar standards

(which is actually extremely ancient: 3 to 4 billion years old), and they tend to fill the enonr_ous

basins formed by giant meteorite impacts on the surface of the moon about four billion years

ago. The lunar highlands, which make up the bulk of the lunar crust, formed in the first half

billion years of planetary history.

The Elephant Moraine sample is a "breccia": i.e. a rock made up of numerous broken

fragments of basaltic rock set in a matrix of smaller broken mineral grains and glassy material.

These breccias are created by meteorite impacts on the surface of the Moon. Examination of the

fragments and of the bulk rock itself reveals that the sample is a type of mare basalt called a

very- low-titanium (VLT) basalt. This type of basalt contains very small amounts of the titanium

bearing minerals that are both characteristic and abundant in many of the mare basalts returned

by the Apollo missions. Both the lithic clasts and the matrix material around them contain the

same suite of minerals: olivine, pyroxene and feldspar are dominant and several other minerals

appear as minor proportions. The dark fraction (pyroxene and olivine) is the most abundant and

its predominance distinguishes this sample from the lunar highlands rocks which are dominated

by the light colored feldspar minerals. Lunar pyroxene and olivine are both magnesium-iron

silicate minerals, whereas lunar feldspar is a calcium-aluminum silicate mineral. Detailed

examination of the minerals in the Elephant Moraine meteorite reveal a range of compositions

that is typical of the VLT basalts, with only small amounts of material from other sources. It is

probable, therefore, that despite the disruption involved when the impact events on the surface of

the Moon turned the original mare basalt into a breccia, that the breccia was assembled mostly

from locally derived material. Comparison with the Apollo and Luna collections reveals that
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small amounts of very-low-titanium basalt were brought back from the Moon only by the APOUo

17 and Luna 24 missions. The 30.7 gram (about 1.1 ounce) sample recovered at Elephant

Moraine is, therefore, a large fraction of the total available VLT basalts on Earth. Remote

sensing data acquired from lunar orbit suggests that VLT basalts f'dl a significant fraction of the

lunar mare basins and that they are poorly represented by the returned samples from the Moon.

The precise area on the surface of the Moon from which the Elephant Moraine mare basalt

breccia was ejected is unknown and there is presently no evidence available to identify its

source. Unlike the earlier meteorite discoveries that sample lunar highlands material almost

exclusively and, as a result, might be derived from almost anywhere on the surface of the Moon,

the very specialized chemical features of this Elephant Moraine meteorite suggest that it is

derived from one of several chemically distinct regions on the lunar nearside that can be

recognized in the orbital mapping data. The largest VLT basins are in the northem hemisphere

but without sample return missions to these mafia, identifying the exact source region of the

Elephant Moraine meteorite will probably not be feasible. Of the previous sample retum

missions to the Moon only Luna 24 landed in a mare basin that appears to have very low or low

titanium basalts on the basis of remote sensing data.

Another lunar meteorite, discovered only a few months ago in the MacAlpine Hills region of

Antarctica, has also been studied for the first time. It is the largest lunar meteorite yet discovered

(comprising two stones with a total mass of 744 grams, or about 1.6 pounds). It has a mineral-

ogy, texture, and composition indicative of derivation from a lunar highlands region, much like

the source regions of the several lunar meteorites that had previously been analyzed. These lunar

highlands meteorites are generally similar to the highlands samples acquired on the Apollo 16

mission (1972). One difference is that the lunar highlands meteorites analyzed to date have con-

sistently had far lower concentrations of uranium and other elements that tend to correlate with

uranium (e.g., thorium, rare earth elements). This difference is important, because uranium and

thorium are the main sources of heat inside the Moon, and because some theories for the origin

of the Moon and the Earth predict relatively high uranium (and thorium, etc.) for the Moon.

Lunar meteorites are usually easy to distinguish from other types of meteorites. No other

type of meteorite is nearly so feldspar-rich as a typical lunar highalnds sample. However, the

Elephant Moraine mare basalt meteorite is superficially similar to another, more common type of

iron-rich basaltic meteorite known as eucrites. The Elephant Moraine sample was originally

assumed to be a eucrite (eucrites are probably derived from disrupted asteroids), until our

analyses of several geochemical ratios revealed traits (such as a relatively high iron/manganese

ratio, and relatively low sodium/calcium and gallium/aluminum ratios) that only a lunar rock,

and certainly not a eucrite, could possess. Very definite confirmation that both the Elephant

Moraine and the MacAlpine HiUs meteorites are lunar has been supplied in the form of data for

the proportions of the three common isotopes of oxygen (reported by R. N. Clayton and T. K.

Mayeda, of the University of Chicago). The proportions of the oxygen isotopes vary from planet

to planet, but remain relatively f'Lxed throughout aU of the material within any large planet, and

thus their measurement can yield powerful constraints on possible provenance of meteorites.

Lunar meteorite samples from Antarctica have been collected by American expeditions,

sponsored by the National Science Foundation (with some support from NASA), and by
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Japanese expeditions, organized by the National Institute of Polar Research. Since 1982, when

the fLrSt lunar meteorite was identified as such, the number of known lunar meteorites has

increased slowly but steadily. The total count of lunar meteorites, all from Antarctica, is now up

to 10. However, when cases of evident "pairing" are eliminated (many meteorites break apart

either during passage through the Earth's atmosphere or upon impact with the Earth's surface),

the tally drops to 7.

These samples have revealed many surprises and insights. Until the discovery of the mare

basalt at Elephant Moraine and another sample from the Japanese collections that is being

reported at this meeting, only lunar highlands samples had been recognized. With the recognition

of these mare basalts it is clear that we are getting samples of the Moon from a much wider

spread of localities than were available from the previous sample return missions. These random

samples from the Moon, therefore, provide independent tests for models of lunar history based

on the sample return missions of the 1969-1976 period. For technological reasons, the landing

sites of those missions were clustered within a small region of the central nearside; an imaginary

polyhedron drawn around this region covers only 4.7% of the lunar surface. As our detailed

knowledge of the Moon increases, based on studies of the lunar meteorites in combination with

the samples of the previous collections, the scientific goals for the next generation of lunar

missions will become clearer and the choice of new landing sites will be based on a coherent set

of multidisciplinary results rather than the almost accidental choices of some of the pioneering

Apollo flights.
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EXPOSUREAGESAND COLLISIONAL HISTORYOFL-CHONDRITEPARENTBODIES.

ThomasGraf andKurt Marti, Dept.of Chemistry,B-017,Univ. of Calif., SanDiego,La Jolla,
CA 92093.

The composition,fossil remnantsof particleradiationsandcosmic-rayreactionproductstell
us that meteoritesin our museumsonce existed in the interiors or on the surfaceof bodies

hundredsof kilometersin diametersomewherein thesolarsystem.Someof thesebodiesmayhave

beenturnedto rubbleby collisions long ago,but othersmay still survive today.The continuing

supplyof meteoritesandof cosmicdustparticleswhich intercepttheorbit of theearthindicatethat

collisions arestill taking placeandsmall objectsareblastedout of craterson parentbodiesof

substantialsize,becausethecosmic-rayrecordsof meteoritestell usthat theywereshieldedfrom

cosmicradiation inside largerbodiesfor mostof thetime sincethey formedin thesolar system

4.56billion ycarsago.Thecosmicray recordbeginsto accumulatein tilemeteoroidsoncetheyare

ejectedfrom theparentbodyandareexposedto thecosmicray environmentin interplanetaryspace

until they are capturedby the Earth, and after passagethrough the atmospherethe surviving
fractionisrecoveredasmeteorites.

Cosmic-rayexposureages(T) measurethetime meteoroidsspendin spaceassmall bodies.

This time T is an important measurein pinpointing the location of meteorite parent bodies,

especiallyif clusteringof T valuesoccurs,reflectingcatastrophiceventsand the simultaneous

injection of impactdebris into similar orbits. Exposureagesof meteoritesarecalculatedfrom

measuredquantitiesin sub-gramsizedchips of individual meteorites,by dividing the(integral)

amountof cosmic-rayproducedreactionproductsof a suitablenuclideX by theproductionrateof

nuclideX, which in turn may beobtainedfrom cosmic-rayinducedradioactivity measurements.
SiJlccprimordial noblegasesin meteoritesarevery strongly depletedrelative to non-volatile
elements,stablenuclides3He,21Ne,and38Arareparticularly well suitedto fill in for nuclideX

and in the following we will useT(3He),T(21Ne),andT(38Ar) to representexposuretimesas

measuredfrom theHe, Ne, and Ar concentrations,respectively,their well establishedisotopic
signaturesandtheirinferredproductionrates.

Orbitsof only afew meteoritesarewell known,but theyall lie in the innersolarsystem,with

apheliain theregionof theasteroidbelt.Objectsin suchorbits will intercepttheEarth'sorbit as

required,but havecalculatedhalf-livesof only tensof million years(1). Therefore,objectsplaced

in suchorbits in theearly historyof thesolarsystemwouldhavebeensweptup long ago,unless
theywereconstantlyreplenishedby areservoir.Observedvaluesof T for chondriticmeteoritesare

aboutequalto calculated orbital lifetimes and show occasional clusters in their age distribution.

Observed sh_x:k effects and some measured substantial losses of radiogenic 4He and 4°Ar, gaseot,s

products from the decay of 40K, 232Th, and 238U, respectively, in the meteorites bear important
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signaturesfor collisional events.All thesecluespoint stronglyto theasteroidbeltasthereservoir
producingmostmeteorites.

Fig. 1 is a histogram of the exposureagesof L-chondrites, a major class of ordinary

chondrites.The distributionis shownon alogarithmicscale.We useacompilationof all He, Ne,

andAr measurementsin meteorites(2).Not all theexperimentaldatain thiscompilationareequally
well suitedto calculateexposureages.Thereforeweclassify thedatainto threeclassesA, B, and

C.ThehighestqualityclassA agesarebelievedto haveanuncertaintycomparableto theresolution

of thehistogram.We makethefollowing observations:
- A peakat -40 million years (My) is clearly resolved and only few meteorites have longer

exposure ages than the ones belonging to this peak. Exposure ages around 40 My are quite high

but still consistent with calculated collisional lifetimes for bodies in Earth-crossing orbits.

Therefore a major catastrophic event is indicated by this peak. It is interesting to note that a peak at

-35 My and a clear drop-off was also observed in the exposure age distribution of the H-

chonchites (3). However, according to our production rates, the two events appear to be distinct.

- A large fraction of L-chondrites shows significant shock effects and losses of radiogenic 4He

and 40Ar. It was shown that several of these meteorites experienced catastrophic degassing <300

or -500 million years ago, long before they were exposed to the cosmic-ray environment (4). Fig.

2 shows the age distribution of those L-chondrites which show large and simil_lr losses of the

radiogenic gases 4He and 40Ar ("degassed" L's) as well as the complement distribution (all minus

"degassed"). We observe that "degassed" L's tend to have shorter exposure ages and that the 40

My peak is weak.

- A subgroup of the "degassed" L's that we call "late degassed" is characterized by even larger

losses of radiogenic 4He. The exposure ages of this subgroup, also plotted in Fig. 2, are < 13 My

and peak at -5 My. We notice that the ratios T(3He)/T(21Ne) are lower on average than either for

L's or "degassed" L's. This indicates that some of the cosmic-ray produced 3He was lost, and

therefore also radiogenic gases 4He and 40Ar may have been lost during cosmic-ray exposure. Gas

losses during cosmic-ray exposure can be caused by solar heating or by secondary collisions.

Alternatively, the very low 4He concentrations in some "late degassed" L's may be due to recent

catastrophic events, as illustrated by the Malakal meteorite (a member of this subgroup) where the

Ar data indicate that gas loss occurred -50 My ago (4). Note, that within error limits this age is

consistent with the 40 My exposure age peak.

- The complement distribution (all minus "degassed" L's) appears to be constant between 5

and 25 My and then drops off sharply. Furthermore, an age cluster of "dcgassed" L's is

recognized at -25 My. Therefore a distinct peak may account for this fine structure

What do we learn from these observations? Some conclusions are briefly discussed:
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1)Thousandsof asteroidsareknownandcould in principlecontributeto themeteoriteinflux
on Earth.On the otherhand,only few parentbodiesarerequired to explain the discontinuous

propertiesof chondrites.The observed40 and 35My exposureagepeakat theupperendof the
agedistributionof L- andH-chondritesindicatesthatourcollectionof meteoritesmaybestrongly

biasedby afew largeevents.

2) Catastrophiclossesof radiogenicgasesoccurredbeforethemeteoroidswereexposedto the

cosmic-rayenvironment.Assuminga singleasteroidfor all L-chondrites,theobserveddifferences

in the exposureagedistribution of L's, "degassed"L's and "late degassed"L's indicateseither
populationdiscriminationsin replenishingEarth-crossingorbitsor differentialorbital lifetimes.

3) Multi-stagehistoriesof meteoroidscan in principle explain suchdiscriminations:During

largecollisional eventsmajorfragmentsandrubblearelikely to beejectedfrom theparentbody.

Someof themmayendup in Earth-crossingorbitsandmaysubsequentlybecapturedby theEarth

without further fragmentation.Others undergocollisions and material which previously was

shieldedis exposedto cosmic-rays.

4) Secondarybreak-upscansometimesbedetectedbecausetheproductionratesof cosmic-ray

producednuclidesdependon theshieldingdepth:shieldingsensorssuchasthe 22Ne/21Neratio

may still rememberthe irradiation conditionsof themeteoroidduring the secondlast stageof

irradiation, whereasmeasuredradioactivities were mainly producedin the last stage. In the

exposureagedistribution of H-chondrites(3,5) we found a subgroupof H's which most likely
haveexperiencedcomplex irradiation histories:The 22Ne/21Neratios are lower than average

indicating large shieldingandthis group'sapparentexposureagesare<4 My. However, in the

caseof a two stepirradiation(thefirst stagein largerobjects)thecalculatedapparentexposureages

are in error, becausethe assumedproduction ratesdo not apply since they are too high. Bur

Gheluai,oneof thesemeteoriteswas recentlystudiedin detail and at this conferencethere is a

reportwhich establishesacomplexirradiationhistory(6).
5)Although ordinary chondrites are the most common type of meteorites captured by Earth

(~85%), spectroscopists do not find good spectral matches for chondrites among the asteroids. A

large fraction of the asteroids on the inner edge are of type "S" and resemble stony meteorites

although no good matches are known (7). On the other hand the Apollo asteroid Toro appears to

match the L-chondrite spectrum reasonably well (8). We should not rule out the possibility that the

predominance of chondrites today is related to collisional destruction of parent objects. It seems

possible that chondrite parent bodies were reduced by collisions to small objects.
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Fig.2: Exposure age distributions of 3
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LONG-SOUGHT PRIMORDIAL FINE-GRAINED INCLUSION DISCOVERED:

Beth B. Holmberg and Akihiko Hashimoto, Harvard-Smithsonian Center for Astrophysics,
Cambridge, MA 02138, U.S.A.

Fine-grained inclusions, one of the many types of mineral masses which make up
carbonaceous chondrite meteorites, have for some time been looked to as an important source of

clues in understanding the earliest beginnings of the solar system. To date, the fine-grained
inclusions studied have all been severely altered mineralogically and texturally. During recent
studies of a sample of the Kainsaz meteorite, we have found a fine-grained inclusion which is

apparently primordial-- unaltered in mineralogy and texture since its formation in the early solar
nebula some four-and-a-half billion years ago.

Carbonaceous chondrites are one group of the stoney meteorites. They represent only
about 1% of the total number of meteorites which have been found, yet for the last two decades
they have provided much of the most valuable information used in deciphering the origin of the
solar system. Some of the exciting finds in this class of meteorite have included the presence of
amino acids distinctly different from those on earth, and micron-sized diamonds of interstellar
origin!

Carbonaceous chondrites are dark gray to black meteorites with a variety of small (up to
several millimeters) mineral masses visible throughout them. About 90% of the volume of the
meteorite, including many of these masses and the bulk of the binding matrix, is composed
mainly of magnesium- and iron-rich silicate minerals. The remaining mineral masses fall into
two groups: some are coarse-grained, compact and well-rounded, the others are very fine-
grained, porous, and more irregular in shape. Both are composed of minerals consisting mainly
of calcium, aluminum, magnesium, silicon, and oxygen. These are referred to as coarse-grained
and fine-grained calcium-, aluminum-rich inclusions (CAI's), or sometimes 'white inclusions'.
The presence of calcium- and aluminum-oxides in minerals tends to raise their melting and
boiling points significantly-- these are high temperature minerals.

Calcium-, aluminum-rich inclusions are important for study because they are generally
considered to be some of the most primitive material in the solar system, having formed, even
before the planets, directly in the solar nebula about 4.6 billion years ago. The early nebula
consisted of a huge disk-shaped cloud of hot gases and minute solid dust particles. These gases,
on cooling, began to condense to form mineral grains. This is a bit like breathing on a window
in winter-- water vapor (gas) from your breath condenses and freezes on the surface of the
window, forming ice (solid water). CAI's are believed to be the veryfirst generation of solid
material that existed in the nebula-- because of their high-temperature nature, they could survive
the terribly hot environment of the nebula, and they could be some of the first minerals to
condense from the nebular gases. Fine-grained inclusions are probably aggregations of these
tiny, early condensate grains. As such, the chemistry, mineralogy, texture, and isotopic
compositions of calcium-, aluminum-rich inclusions provide one of the best sources of
information for deducing and understanding the chemical and physical conditions in the early
solar nebula. Indeed, many of these inclusions even display isotopic signatures which may well
represent nucleosynthesis events which occurred even before the formation of the solar nebula!

Despite this, fine-grained inclusions have seen somewhat limited study, probably due in
large part to the difficulties involved with examining and analyzing them. Even with modern

electron microprobes, it takes considerable effort and time to get decent images and analyses of
the 5-50 _m grains which make up fine-grained inclusions. The micron-thick mineral layers
which cover them are even more difficult to study. Those fine-grained inclusions which have
been studied have had the common trait of being severely altered mineralogically. It is easy to

understand this sort of thing happening in the changing chemical and thermal environment of the
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evolving nebula. The theories involving their origins have relied on chemical similarities to
coarse-grained CAI's to deduce the original mineralogy of fine-grained inclusions. Until now,
however, no unaltered, unmetamorphosed fine-grained inclusion had been found for study.

In a thin section (-1.5 cm x~l.0 cm; 30 t.tm thick) of the Kainsaz meteorite we recently
found a white, elongated (2.2 x 0.8 mm), fine-grained inclusion. Kainsaz, found in the U.S.S.R.,
is one of the least metamorphosed meteorites of it's class (CO3). The inclusion, named K- 1, is
an irregular mass of loosely-packed spinel grains, generally 5-30 I.tm in size. Each of the spinel
grains is coated with a layer of melilite, occasional anorthite, and very thin pyroxene, totalling
only a few microns of thickness (fig. 1). The spinel (MgA1204) contains 1-5 wt% FeO

(replacing MgO in the mineral structure), though grains with up to 15 wt% FeO may be found
towards the outside of the inclusion. Spinel occupies about 45% of the volume of the inclusion.
The combination of spinel-covering minerals (melilite+anorthite+pyroxene) accounts for about
25% of the volume of the inclusion. The remaining 30% is void space (fig.2). This is the most
spinel-rich and porous fine-grained inclusion that has been found. The entire inclusion is
enclosed by an extremely fine-grained (grain size_< 1 gm) two-layered rim composed mainly of
iron-rich olivine (fig.3). This rim is about 80 ktm in total thickness, and occasionally intrudes the
inclusion, filling the spaces between spinel grains up to a depth of about 50 _m from the
inclusion surface. Similar rim features are not uncommon on other fine-grained inclusions.

They have been referred to as 'accretionary rims' and are apparently a secondary feature,
forming independent of the accretion of the inclusion itself. This feature conjures a picture of
the inclusion floating in the gases of the now-cooler nebula, collecting tiny particles of later
mineral condensates on its surface, much like a cotton ball roiling across a dusty floor.

Previously studied fine-grained inclusions, primarily from the Allende meteorite, contain
a much broader range of minerals. Many of these are considered to be secondary minerals
produced by chemical alteration of the original Ca, Al-rich minerals. These secondary minerals
are generally low-temperature in nature and carry volatile elements as additional constituents.

This has cast some doubts on the idea of fine-grained inclusions as high-temperature nebular
condensates. Yet certain isotopic signatures point to formation very early in the evolution of the
solar nebula. If Allende fine-grained inclusions are alterations of some early high-temperature
condensate, the original (pre-alteration) minerals are theorized to include melilite, anorthite,
spinel, pyroxene, and perovskite. Remnants of most of these primary minerals have escaped
complete alteration and may be found in the Allende inclusions. Melilite, however, is missing in
all but one of the fine-grained inclusions thus far studied. In coarse-grained inclusions, melilite
is the most abundant phase, and is seen, in places, to partially alter forming a mineral
composition very similar to that of the fine-grained inclusions. No other coarse-grained CAI
minerals are seen to alter to any great degree, indicating that melilite is the primary mineral most
susceptible to alteration. The compact coarse-grained inclusions minimize the interactions with
mineral-altering nebular gases, but the small grain size and abundant open space in fine-grained
inclusions would allow extremely easy access of such gases to the primary minerals. If melilite
is the most easily altered of these minerals, it makes sense that it might not remain in existence
in most of the altered fine-grained inclusions. Other features of previously studied fine-grained
inclusions include a distinctive three-fold zonation of bulk mineralogy, sort of like an onion,
with each concentric layer having its own collection of minerals. This is a gross alteration
feature controlled by the diffusion and chemical potentials of vapor species released from the
existing calcium-, aluminum-rich minerals, and gas species still present in the nebula.

In spite of its abundant pore space, which would allow easy movement of mineral-
altering gases into and through the inclusion, the K-1 inclusion shows signs of not having been
subjected to the alteration experienced by other fine-grained inclusions. It utterly lacks the
three-fold zonation of mineral composition seen in other inclusions. It does not contain any of
the secondary minerals, produced by alteration, which are seen in other inclusions. Most
importantly, it is rich in melilite, the mineral shown to be most susceptible to alteration. K-1 's
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overall chemical composition is still similar to that of other fine-grained inclusions, and, in fact,
its mineralogy includes many of the anticipated original minerals. While the increased iron
contents of some of the outermost spinel grains may be attributed to minor alteration effects, it
would appear that K-1 has basically survived as a pre-alteration, or primordial, fine-grained
inclusion.

How has K-1 managed to avoid the alterations seen in other fine-grained inclusions, and
survive intact for so many cons? The fh'st part of the answer is that various meteorites, even
those of similar bulk composition, probably evolved in different parts of the nebula, and may,
therefore, have experienced slightly different conditions. Secondly, parent body of the Kainsaz
meteorite has avoided any significant thermal and mechanical processes since its accretion and
has, therefore, apparently done a very effective job of sealing the inclusion off from outside
influences and cradling its relatively fragile structure intact through the years.

One obvious question that comes is: does the K- 1 inclusion represent a direct (unaltered)
precursor of the altered fine-grained inclusions observed in Allende and other carbonaceous
chondrites? Spinel-cored grains are fairly common in the Allende fine-grained inclusions. They
tend to be covered by one to three mineral layers which may include nepheline, anorthite,
grossular garnet, olivine, diopsidic pyroxene, and/or hedenbergite. The pyroxene layer is
generally outermost on such grains. If K- 1 were to be altered, the melilite layer would change to
nepheline, sodalite, anorthite, and/or grossular. The anorthite found in K-1 would likely alter to
nepheline and/or sodalite, and the spinel core to a mixture of olivine and nepheline. The outer
layer of diopsidic pyroxene would tend to be unaffected. This looks to be in fairly good
agreement with the alteration minerals found in Allende inclusions, but the hedenbergite found
in Allende is unaccounted for. Hedenbergite, however, is considered to be a mineral formed by
direct condensation from a gas onto a pre-existing mineral surface. It is, therefore, a secondary
mineral, but not an alteration mineral.

Is there any reason to think, then, that K-1 is not an ancestor of the Allende fine-grained
inclusions? Yes, there is. Allende inclusions have an abundance of materials filling the voids
between spinel-cored objects. These materials consist mostly of tiny particles of the previously
described alteration minerals, as well as diopsidic pyroxene and spinel. The volume of such in-
filling material often is greater than the volume of the spinel-centered grains themselves. K-1
has much void space between spinel grains, but little material filling such space. To produce the
textures seen in the Allende inclusions, K-1 spinel grains would not only have to be altered, they
would also have to disintegrate to produce such volumes of space-filling materials. However,
most of the spinel-centered objects in the Allende fine-grained inclusions appear to have
maintained their textural integrity: the outermost pyroxene layer remains whole and fully
attached to the rest of the grain.

Does this lack of complete correlation invalidate the usefulness of the K-1 fine-grained
inclusion? By no means! While it is apparently not a specific precursor of the Allende fine-
grained inclusions, it is still the most unchanged, primitive example of a fine-grained inclusion
yet to be found. It is likely that further study on the variety of fine-grained inclusions in
existence will turn up a descendant of the K-1 inclusion. Further, the finding of such a
primordial inclusion in the Kainsaz meteorite points towards this and other less-metamorphosed
carbonaceous chondrites as a likely place to search for an Allende inclusion precursor. Work on
the K-1 inclusion is just beginning: further studies (including those of isotopic composition and
rare-earth element enrichment) on this and any similar inclusions will help to further define the
conditions and processes present in the early solar nebula.
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Fig. 1. One of the larger,
more complex grains in the
K-1 inclusion. The central

spinel grains (sp) are coated
by a layer of melilite (mel) of
variable thickness,
discontinuous anorthite

feldspar (an), and a thin outer
layer of pyroxene (px).

Fig. 2. The typical texture of
the K-1 inclusion, showing
irregular spinel grains loosely
packed together. A thin layer
of covering materials
(melilite+anorthite+pyroxene
) can be seen on each of the
grains.

Fig. 3. The K-1 fine-grained
inclusion. Note the irregular
shape, consistant texture, and
surrounding accretionary rim
(arrow).
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MODELS OF SOLAR-POWERED GEYSERS ON TRITON: II. L, Kliu_;,
U.S. Geological Survey, Flagstaff, AZ 86001

IIltroducthm A highlight of the Voyager 2 encounter with the Neptune system was the discovery by
Laurence Soderblom of the U.S. Geological Survey of actively erupting geyser-like plumes on "I_iton. A series

of images from different viewing angles obtained as the spacecraft flew past Triton clearly shows at least two

plumes above the satellite's surface. The plumes, which appeared dark relative to the surface beneath them,

included a vertical column that rose to an altitude of about 8 km (5 mi), and a subhorisontal dark cloud that

extended westward for several hundred kilometers. Other images revealed long, east-west clouds recognised

as bright features over Triton's night side that were simils_ in form to the clouds attached to the eruption

columns. Localised bright clouds were seen silhouetted over the day-side horison in yet other images. These
clouds may all be mamifestations of the same eruptive phenomenon. Both the plumes and the clouds were

located within the area of the south pols_ cap, at latitudes ranging from 300 to 60°S. This localisation,

combined with the fact that the current latitude at which the sun passes overhead is 45°S, suggests the
eruptions are powered (or at least in some way triggered) by sunlight. I have been modeling solar-powered

Triton geysers, seeking to understand (1) the processes that might be involved in channeling solar energy to
an erupting geyser, (2) the sise and properties of the subsurface region from which the eruptive fluids might
be derived, and ultimately (3) whether solar energy could account for the observed eruptions on Triton.

Properties of the. Geyst:rs The possibility of currently active eruptions had been raised by

Soderblom and other members of the Voyager Imaging Team earlier in the encounter with Triton, in an

attempt to explain the many northeast-trending dark streaks seen on Triton's south polar cap. These
streaks were found in the same range of latitudes where the active plumes were later discovered. The streaks

strongly resembled dust streaks created by wind action on Mars, yet Voyager 2 measured the pressure in

Triton's nitrogen atmosphere to be scarcely one one-thousandth the pressure of the Martian atmosphere.
Soderblom and others suggested that gas erupted at a higher local pressure could carry dark particles that
would be deposited downwind as a streak. The eruptive activity was thought to be very recent--to have

occurred less than a few Tritonian years ago (each such year equals 165 Earth years). Otherwise the streaks

would have been buried by nitrogen frost that condenses out of the atmosphere during the winter. It seems
likely that the plumes later found are indeed related to the surface streaks. If so, we can use the relative

numbers observed--roughly 10 plumes and clouds compared with perhaps 100 streaks--to estimate the

length of time when any given plume is active: about one-tenth of the Tritonian summer, or 8 to 10 Earth

years. The difference in trend between the plumes and streaks does not rule out their being related. A

model of Triton's atmosphere by Andrew Ingersoll of Caltech predicted that the wind direction changes from

northeast to west with increasing altitude. The plumes observed in action apparently reach the uppermost,

westward-blowing layer of the atmosphere. Streaks that extend northeast from dark spots (presumed to be
sources of vent areas) may be formed by less energetic eruptions that reached only the northeast-blowing
atmospheric layer.

It is possible to estimate the amount of material being erupted. Both the horisontal parts of the plumes

and their shadows appear about 5% darker than the surrounding surface. This suggests the suspended dust

is nearly black and is abundant enough to intercept 5% of the light passing through the plume. Combining
this observation with an estimate of the sise of the dust particles (they must be big enough to absorb light

efficiently, but not so big that they settle out of the plume), the radius of the plume, and the wind velocity

from Ingersoll's model, Soderblom has calculated that about I kg (2 lb) of dust must be erupted per second.
The amount of gas erupted is harder to estimate directly, but it might be roughly 20 times the amount of
dust.

Susan Kieffer of the U.S. Geological Survey applied a fluid-dynamic model, developed to describe the

eruption of terrestrial geysers and volcanoes, to the plumes on Triton. She found that the height of the

Tritonian plumes could be accounted for if they were about 100m (330ft) across at the base, and if the

erupted nitrogen gas were at a temperature of roughly 41K (-386°F) before it expands and cools to the

ambient temperature of 37 K (-393°F). Eugene Shoemaker, also of the U.S. Geological Survey, has pointed

out that the geyser source to which the 100-m sise applies is more likely on geological grounds to be a region

of many closely spaced fissures or vents rather than a single large opening. If the height of the plumes
is limited by a stratified layer in the atmosphere, a larger source diameter would be consistent with the
observations.
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A Gr_,,_,,hous_ em Trit,m A partial model of a solar-powered 'rritonian geyser was described in the
30-day report of the Voyager Imaging Team [SMITJl, I_.A., ¢,t a/. 1989, .S'ci_,l_cc. 246. 1422-1429]. In this

model, solar energy is absorbed by dark material underlying a transparent surface layer of nitrogen ice. The

low thermal conductivity of the nitrogen leads to a strong "greenhouse effect": the temperature, and hence

the equilibrium vapor pressure of nitrogen, are greater below the layer than at the surface. If the nitrogen

layer forms a gas-tight seal (it was suggested), a reservoir of pressurized gas might be built up in pore spaces

below the surface. Rupturing of the seal, or lateral migration of the gas to regions where the seal is imperfect,

would lead to venting of the trapped gas that might account for the observed eruptions.

Preliminary calculations by Robert Brown, Jet Propulsion Laboratory, and others indicate that the

greenhouse mechanism could generate the required temperature increase. The intensity of sunlight at Triton
is only one one-thousandth of that at the Earth, or about 1.5 watts per square meter; averaged over one

Triton day, the power incident on an area near the subsolar latitude is roughly half as great. If this power

were deposited at the base ofa 2-m thick nitrogen layer and all of it were conducted upward, the temperature

at the base would be 7.5 K higher than that at the surface. The temperature enhancement would be less if

(as is likely) some of the sunlight were reflected, or if a significant amount of heat were conducted away from
the greenhouse downward or horizontally.

Even if the greenhouse were perfect, so that all of the solar energy incident on it could be used to

vaporize nitrogen to feed the geyser, a region 1.Skm (about lmi) in radius would be required to collect
enough energy. If the loss of energy by conduction through the greenhouse layer is allowed for, the required

radius increases to 4ks, or almost 100 times the inferred radius of the geyser source regions. Thus, for

the insolation-driven geyser to work, energy must be transmitted to the geyser source region from a much

larger surrounding "collector." This energy must be transmitted by a means that is much more efficient
than thermal conduction in solid nitrogen; otherwise, conduction across the greenhouse layer would "short

circuit" the geyser.

gtt_rgy-Trallsport Processes My investigations have indicated that, although the thermal conduc-

tivity of water ice is roughly 100 times greater than that of solid nitrogen, conduction in a water-ice layer

could not transport the energy required for a Trltonian geyser. A much mote promising means of energy

transport is the flow of gas through pore spaces in the material below the greenhouse layer. Consider a

localized region of the subsurface that is warmer than its surroundings. The gas pressure and density in

the pores in this region will be enhanced in keeping with the equilibrium vapor pressure of solid nitrogen

as a function of temperature. The pressure difference between the warm region and its surroundings will
drive a flow of gas through the interconnecting pore spaces; in order to maintain the equilibrium pressure

distribution despite this flow, nitrogen will evaporate in the warm region and condense where it is colder.

Energy, in the form of latent heat, will consequently be transferred from one region to the other. This
energy transport is in the same direction as ordinary thermal conduction, and one can define an "effective

thermal conductivity" that describes the energy flow for a given temperature gradient. Unlike the ordinary

thermal conductivity, however, the effective conductivity increases dramatically with temperature because of

the strong temperature dependence of the vapor pressure and density. The mechanism of heat transport just

described is the same as that employed in "heat pipes," hollow tubes containing a wick and a volatile liquid

in equilibrium with its vapor, which ate variously used for such purposes as controlling the temperature of

spacecraft and baking potatoes more efficiently.

In addition to intrinsic properties of the gas, such as vapor pressure, latent heat, a_td viscosity (which

determines the rate of flow under a given pressure gradient), the effective thermal cond_lctivity depends on
the permeability of the porous medium. The permeability is a measure of the ease with which fluid can pass

through the pores; it is a function of the fraction of the total volume the pores occupy and of their size. I used

a theoretical model relating permeability to porosity and to the size of the solid grains or blocks (on which

the size of the pores depends) to calculate the effective conductivity of a porous nitrogen layer on Triton.

To obtain reasonable success with the thermal models described below, I found it necessary to assume quite

large grain sizes. For example, the numerical results I give here are for a grain size of 2 m (about 6.5 ft)

and a porosity of 10%. The corresponding effective conductivity at the subsurface temperature of 41 K is

about 4000 times the conductivity of non-porous nitrogen at the same temperature and roughly twice that

of copper at room temperature.

The permeability required to achieve this effective conductivity is very large compared with repotted
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permeabilities of terrestrial rocks and sediments, but this may be a matter of observational bias. Deposits

of meter-sized boulders exist on Earth, but such deposits are so permeable that they are of little hydrologic
importance, and their permeability is unlikely to have been measured; there is no real reason to suspect

it is not as large as theory predicts. There is, moreover, a mechanism that might maintain a very porous

and coarse layer of nitrogen on Triton's surface. The global equilibrium temperature of 37 K is only slightly
above the temperature of 35.6 K (-395.6°F) at which solid nitrogen undergoes a phase transition. The

lower-temperature phase is about 10% denser than the higher-temperature phase. Thus, if the temperature

dropped only a few degrees below the equilibrium value during the winter, the solid nitrogen would contract

and fracture, yielding roughly the 10% porosity assumed here. The fracture spacing (or block size) might
well be comparable with the thickness of the nitrogen layer, making meter-sized blocks plausible for a layer

several meters thick. Jostling of the blocks as they separated would ensure that the fractures would not

reclose entirely when the temperature increased and the nitrogen converted back to the less dense phase.

St_ady-Stnte Thermal Models To understand the required geometry and size of a solar-powered

geyser, I have calculated numerical models of the temperature field beneath the collector and geyser. 1 started

with steady-state models, for several reasons. Steady-state models are simpler and faster to calculate than

time-dependent ones, particularly for the temperature-dependent effective conductivity we are interested in.
It is also possible to "scale up" the results of a single steady-state calculation to determine the temperatures

in systems of different sizes; this is much less convenient for time-dependent models. Finally, steady-state

models are realistic representations of two possible situations on Triton: a "reservoir" of gas and energy
that has been created by the Sun but has not yet been tapped by a geyser, and a subsurface conduit that

is receiving energy and passing it on to a geyser at an equilibrium rate. The geometry of my models is

idealized: the collector is represented by a circular patch on the surface that supplies energy, and the geyser

(if any) by a smaller concentric circle in which energy is extracted.

I also make an approximation of the method by which the greenhouse collector feeds energy into the

subsurface region. In reality, a fixed amount of solar energy is absorbed at the base of the greenhouse, and

the temperature adjusts itself so that thermal conduction upward to the surface and gas-phase transport
downward together remove just this much energy, maintaining equilibrium. It is easier, however, to model

two limiting cases of this behavior: (1) for a small collector, most of the energy is transported away by the gas
rather than through the greenhouse, making it appropriate to specify the energy input into the subsurface;

and (2) for a large collector, most of the energy is lost by conduction to the surface, making it appropriate

to specify the temperature at the base of the greenhouse layer. Thus, in reality, the reservoir temperature

achieved increases with size for small collectors, then levels out at a value controlled by the efficiency of the

greenhouse layer. By comparing the two types of simplified models, I can estimate the size of the smallest

collector that can approach the limiting temperature of the reservoir.

I assuming the effective conductivity described above and an energy input into the subsurface of
0 1 W m _. The remainder of the solar energy is reflected away and conducted across the greenhouse layer

to maintain the elevated subsurface temperature. I then calculate that a collector 30kin (18 mi) in radius

would be needed to reach a limiting temperature of 41K. I have further assumed in this this calculation

that the porous layer is very deep. It is more likely that the layer of high effective conductivity is relatively

thin; in any event, the Tritonian summer is not long enough for thermal steady state to be reached in a

layer thicker than a few hundred meters (I000 ft). Smaller collectors can reach the limiting temperature if
the porous layer is thin. For example, if the layer is I00 m (330ft) thick, a collector 3 km (2 mi) in radius

suffices. This size is comparable with that of the dark spots seen at the bases of the active geysers on Triton.

An interesting feature of these reservoir models is that, although energy is transported primarily by

gas flow, it is stored mainly as sensible heat in the solid matrix. The amount of pressurized gas actually

present in the pore spaces when the reservoir is tapped is much less than the amount that can be released

by evaporation and cooling of the warm solid nitrogen.

The steady-state power that can be delivered to a geyser in the center of the collector region is a function

of the effective conductivity, the geyser radius, the maximum subsurface temperature, and the thickness of

the porous layer. As we have seen, the maximum temperature reaches a limiting value for large collectors

that we will assume to be 41 K. It is convenient that the effect of the porous layer thickness largely cancels

out: in a thinner layer, energy is fed to the geyser through a smaller area, but the thermal gradients are

correspondingly larger. For a given permeability, the power delivered to the geyser increases linearly with
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tile geyser radius. Requlringthat this power suffice to evaporate 20 kg of nitrogen (the estimated amount of

gas erupting front the active geysers) per second, I find that a geyser radius of 400-600m (1400-2000ft) is
needed, depending on the exact numerical model I choose. These values are 10 times less than the required

radius of a "leaky greenhouse" with no lateral energy transport below the surface, but they are still 10 times

greater than the estimated source radius of the active plumes. The calculated radius is decreased if the

effective conductivity is larger, but, as discussed above, I have already assumed a very large permeability

for the subsurface layer. According to the permeability-grain size relation I have used, a grain size of 6 m is

needed to reduce the required geyser radius to 50 m.

Disc_ussion The following conclusions can be drawn from the work I have outlined. First, for the

Tritonian geysers to be solar powered, they must have a very efficient means of transporting energy from a

large collector region to a much smaller geyser source area. Second, such an energy-transport mechanism
may exist in the form of gas flow through a porous subsurface layer; the permeability I have assumed for this

layer is admittedly very large, but it might be maintained by fracturing due to seasonal phase changes in

the solid nitrogen. Third, thermal modeling indicates that, despite the efficiency of the gas in transporting
heat away, a reservoir at the required temperature can be established under a collector of modest size (a

few kilometers in radius) provided the permeable layer is relatively thin. Finally, the thermal models also

suggest that the gas-phase energy transport is probably not efficient enough to deliver the power required for

a geyser to a small enough source region in steady state. Clearly, the next step is to examine time-dependent

models, in which a geyser taps a pre-existing reservoir. The initial output of energy and gas will exceed the

steady-state value, allowing the requirements for geyser radius, permeability, or both to be relaxed. It is also
of interest to see whether time-dependent models can predict the estimated active life span of the eruptions

(5-10 Earth years). A preliminary scaling calculation is encouraging in this respect: 5 years is about the
time required for gas flow to extract the excess energy from a region about 100 m across. The length of time

for which a geyser erupts most actively may thus be determined by the time required to extract the thermal

energy (in excess of that of the steady state eventually achieved) in the area immediately surrounding the

vent.
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INSPECTION OF THE LONG DURATION EXPOSURE FACILITY AND
PLANS TO CHARACTERIZE THE DUST ENVIRONMENT IN LOW-EARtH ORBIT
LDEF Meteoroid and Debris Special Investigation Group .

INTRODUCTION The Long Duration Exposure Facility (LDEF) was

deposited at an altitude of 250 nautical miles (nm) in April of

1984, for an intended exposure of 9 months. LDEF has now been

retrieved at an altitude of 175 nm, after a total exposure time

of 5.7 years. While this unexpectedly long exposure has

compromised a few experiments, it has greatly enhanced the

scientific return from most. LDEF provides an unparalleled

opportunity for characterization of the effects of exposure to
the low-Earth environment.

LDEF is a totally passive, cylindrical satellite 30 feet long

and 14 feet in diameter. Experiments are accommodated in 84

modular trays, for a total exposure area of 130 m _. For_
comparison, Solar Maxlmum Satellite blankets totaled 3 m 2 and

were exposed for 4 years. LDEF was exposed in a gravity-

stabilized orientation, with deliberate Earth-, space-, leading-,

trailing- and side-facing directions. The 57 different

experiments concern basic science (dust, debris, comic rays,

interstellar gas, exobiology), spacecraft materials and thermal

systems, power and propulsion, and electronics and optics. One

quarter of LDEF surfaces are dedicated to dust and orbital debris

experiments. However, to make maximum use of LDEF the Meteoroid

and Debris Special Investigation Group (M&D SIG) has been

organized to permit coordinated analyses of the additional

surfaces not already part of dedicated meteoroid or debris

instruments. This group is also responsible for the integration

of all LDEF meteoroid and debris data (from both the Principal

Investigators (PIs) and M&D SIG) into a single data base.

The first purpose of the M&D SIG is elucidation of the

meteoroid and debris environment in low-Earth orbit, through

characterization of total flux, trajectories, chemistry,

mineralogy, isotopic composition and sources. The second purpose

is to assess effects of impactors on spacecraft materials through

examination of crater formation, projectile penetration and

secondary ejecta production, on the widely varied materials and

experiment configurations on LDEF.

DOCUMENTATION OF THE IMPACT HISTORY OF ENTIRE LDEF SATELLITE

It is essential to document the entire impact record of LDEF

before the component experiment trays are removed to PI

laboratories, because many PI analyses will be destructive.

Therefore, we will photo-document every large (>i mm) impact

feature on LDEF (trays and structure) using a binocular

microscope, digitizing video images for later analysis. We

expect to find a few hundred such features. We will also

participate in the analysis of approximately 20 thermal

protection blankets, which witnessed all pointing directions.

Most of these blankets cover cosmlc-ray detectors (sponsored by

the Dublin Institute for Advanced Studies and the European Space

Agency). We will also obtain components from several other

experiment trays with desirable characteristics. The most
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desirable materials that we have identified include low-density
media, foils (stacked or otherwise), optical surfaces, very pure

metals, identical materials facing in all directions, experiments

with time-dependent mechanisms, and experiments with compartments

or irregular geometries (for secondary ejecta and impactor

penetration studies). This documentation will permit the

population characteristics of the largest fraction of meteoroid

and debris grains to be determined. We will present results of

these initial inspections at the meeting.

DETAILED SCANNING AND ANALYSIS OF IMPACT FEATURES AND IMPACTORS

Selected surfaces will be completely scanned at high

magnification on optical scanning tables located at the Johnson

Space Center (JSC), the University of Kent and Langley Research

Center. These data will permit the mid size-range impactor

population to be evaluated. The smallest population of impactors

will be characterized by electron optical techniques at the host

laboratories of several M&D SIG members and LDEF PIs. Impactor

residues will be characterized by a combination of electron beam,

ion probe and microparticle INAA techniques (to mention a few).

In many instances, PIs not belonging to the M&D SIG will

encounter impact features on their experiment trays of

potentially great interest. Where it is impossible for the M&D

SIG itself to analyze such features we will mitigate the

potential data loss by providing the PI with advice and

analytical standards, ensuring that all meteoroid and debris data

collected by any LDEF worker will be internally consistent.

DATABASE AND CURATION Meteoroid and debris data collected by PIs

will be combined with M&D SIG data into a single database. This

database will be maintained by personnel of the Planetary

Materials Curatorial Facility at JSC, guided by experience with
the Solar Max Database. This database will be available for use

by researchers and engineers, and will constitute a baseline for

future spacecraft design efforts. Selected impact features of

particular interest will be curated at the Curatorial Facility at

JSC, along with a representative selection of materials flown on

LDEF, serving as a valuable future source of information on the

environmental effects of space exposure.

DATA INTERPRETATION The meteoroid and debris data will be used

to make flux calculations and spacecraft hazard predictions. The

directional nature of LDEF will permit particle trajectories to

be included in these calculations, representing a significant

advance over what was obtained from all previous investigations,

including those of the Solar Max thermal blankets and louvers.

* W.H. Kinard (NASA/LaRC, Chair), M.E. Zolensky, F. Horz, D.

Kessler, H. Zook (NASA/JSC), T.H. See (Lockheed), C.G. Simon, R.

Walker, E. Zinner (Washington U.), D.R. Atkinson (Kirtland AFB),

M.K. Allbrooks (S-Cubed), J.A.M. McDonnell (U. of Kent), D. Humes

(NASA/LaRC), D. Brownlee (U. of Washington), J-C. Mandeville

(CERT), M.M. Finckenor (NASA/MSFC), V. Chobotov (Aerospace

Corp.), T. Bunch (NASA/ARC), M. Mirtich (NASA/LRC).
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TIlE ItEATING OF SMALL ROCKY BODIES IN THE EARLY HISTORY OF THE

SOLAR SYSTEM: WHAT DO METEORITES TELL US? T.J. McCoy, G.J. Taylor,
E.R.D. Scott and K. Keil, Institute of Meteoritics, University of New Mexico,
Albuquerque, New Mexico 87131 USA.

Meteorites are naturally occurring objects that come from space and reach earth in

pieces large enough to be recovered. Meteorites can be divided into two broad

categories: those which have been melted and those which have not been. This melting

occurred in asteroids (small bodies between Mars and Jupiter and source of most

meteorites), not during passage through the earth's atmosphere. The meteorites that have

not been melted were nevertheless heated. This heating is reflected in chemical and

textural changes.

All unmelted meteorites are classified as chondrites, which contain chondrules

(millimeter-sized silicate spheres). Ordinary chondrites, so-called becausee they are the

most common group of chondrites, can be divided into 3 groups (tl, L, and LL) which

formed on three distinct bodies. The effects of this gentle heating in ordinary

chondrites include homogenization of the compositions of the chondrule silicates, a

general increase in grain size, and obliteration of chondrule boundaries. These changes

are used to classify chondrite into a petrologic sequence, which ranks ordinary

chondrites from type 3 (least affected by heating) to type 6 (most affected by heating).

Meteoriticists are particularly interested in determining the maximum temperature a

meteorite reached and how quickly it cooled. This can provide information on the

timing of heating relative to the formation of the asteroids and the sizes of the asteroids.

One widely used method involves the exchange of nickel between two metallic minerals.

As a meteorite cools, a low-nickel mineral (kamacite) grows and replaces a high-nickel

mineral (taenite). The kamacite transfers its nickel into the taenite. However, nickel

atoms migrate through kamacite much faster than through taenite and they tend to pile

up as they enter the taenite. If a meteorite cools very quickly, the nickel atoms have

less time to move into the middle of the taenite grains. Conversely, slow cooling allows

nickel atoms to move into the center of taenite grains. As a result, a relationship exists

between a taenite grain's size and the nickel content of its center. This relationship
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allows measurement of how quickly a meteorite cooled - its metallographic cooling rate.

Measurements of these cooling rates, as related to petrologic type, can tell us a great deal

about how asteroids were heated.

One popular model for the heating of asteroids is the Nonion-shell" model, where

petrologic types would occur in shells around the center of asteroids, just as layers on

the center of an onion. In this model, asteroids were internally heated by the decay of

short-lived radioactive elements, and the maximum temperatures a meteorite reached

decreased as distance from the center of the asteroid increased. Other authors believe

that asteroids were heated from outside, possibly by a sun that was much hotter and

brighter than it is now. If this were the case, we would expect the type 6 material to be

located on the outside of the asteroid and cool the fastest. This situation is analogous to

a rock in a campfire. The outside gets hottest in the fire, but when removed from the

fire it cools the fastest. However, no correlation has been found between melallographic

cooling rates and maximum temperature and neither model seems reasonable.

This lack of correlation has been used as evidence to develop an exotic, yet entirely

plausible, model for the heating of meteorites. Most of the effects seen in ordinary

chondrites occur near the maximum temperature, but metallographic cooling rates are

established at lower temperatures for most of these meteorites. Consequently, some

authors argue that the temperatures for these two events must have been reached when

the meteorite was at different depths in the asteroids. This could have happened if the

maximum temperature were reached in smaller asteroids, which then combine to make

bigger asteroids. The metallographic cooling rates are then determined by the small

asteroid's final resting place inside the big asteroid. Alternatively, the breakup and

reassembly of an onion-shell body during metamorphism could cause a lack of

correlation. In this case, the maximum temperature is dependent on depth, but before

metallographic temperatures are reached, the asteroid is broken up and reassembled into

a jumbled rubble pile. Once again, the metallographic cooling rates for a meteorite

depend on where it was inside the reassembled asteroid.



3O

HEATING OF ASTEROIDS
McCoy,T.J. et al.

In this work, we found for the first time a relationship between metallographic

cooling rates and petrologic type in a small group of ordinary chondrites (the LL

ordinary chondrites of petrologic type 3-4). This group of meteorites was chosen

because the maximum temperature is in the same range as temperatures at which cooling

rates were established. Thus, the maximum temperature and cooling rate must have

occurred in the same environment. In this group, the hotter the meteorite got, the

quicker it cooled. This is the trend expected for a body heated from outside. However,

the slowest cooling rates (~l°C/Myr) require that the asteroid must have been big -

much larger than could be heated by an external source.

An alternative explanation involves changes in the physical properties of meteorites

brought about by the heating. Meteorites likely formed as a fluffy pile of their

components and heating would cause the pile to compact and grains would grow

together. As it compacts, the ability to cool increases. This might explain why the

hotter material cooled faster. To prevent exchange of heat between different materials

and ironing out of this trend, uneven heating may have been necessary. Localized

pockets would be heated but be separated by much colder rock between the pockets.

This implies that no systematic spatial relationship existed between petrologic types in at

least some asteroids. Since this trend exists in only a limited range of petrologic types

(3-4), it also implies that other petrologic types formed on other bodies. The small

asteroids may have all accreted into a larger asteroid after cooling.

This work suggests that no systematic relationship exists between the location of a

meteorite in an asteroid and the extent to which it was heated or cooled. Instead,

beating of small bodies in the early solar system was a complex process which is not

fully understood.
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DID TRITON STAY MOLTEN, AND DOES THIS HAVE ANYTHING TO

DO WITH HOW TRITON LOOKS TODAY? William B. McKinnon and Lance

A.M. Benner, Department of Earth and Planetary Sciences and McDonnell Center for the

Space Sciences, Washington University, Saint Louis, MO 63130.

Among the major highlights of last summer's Voyager encounter with Neptune were

the first close observations of the mysterious moon Triton. Planetary scientists had long

suspected that Triton would be interesting because of its anomalous retrograde (backwards)

orbit, but Triton's surface turned out to be nothing less than astonishing: the satellite is

covered with fractures, icy lava flows and volcanic calderas (collapse craters), frost and

plume deposits, and other features that remain puzzling. Subsequent analysis revealed

ongoing volcanic eruptions or geysering, with probably methane and/or nitrogen gas being

vented. Thus Triton, the first icy satellite of its size class in the solar system to be visited by

spacecraft, is a geologically active world, and one that possesses features that have, by and

large, never been seen on the other icy satellites of the solar system.

What can explain this diversity of features? What does it mean for Triton's

composition, structure, and history? And what does it all mean for how the outer solar

system assembled 4.5 billion years ago? These are the questions planetary scientists will

struggle with in the years to come. At this meeting, William McKinnon and Lance Benner

of Washington University (in St. Louis) present the results of recent calculati_ns and

modeling that suggest that massive tidal heating and melting, associated with Triton's

capture by Neptune, could be largely responsible for Triton's geologically yotzthful

appearance.

Background

Several workers, going back many years, have suggested that Triton's retrograde and

tilted (with respect to Neptune's equator) orbit could be explained if Triton was a captured

satellite. There are two two major ways for this to happen. The first is captute by gas

drag. This was first suggested by James Pollack and co-workers at NASA-Ames Research

Center in 1979, and involves a solar-orbiting Triton passing close to Neptune when the

planet was forming and thus when it had a large amount of gas (mainly hydrogen and

helium) in close proximity. Gas drag would slow Triton down just enough that it would

become permanently gravitationally bound to Neptune. A more modem and detailed version

of the gas drag hypothesis is presented by Andrew Leith and William McKinnon in a

companion talk in the Triton session. In that work, Triton is captured by gas drag in a later
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phase of Neptune's evolution, one in which accretion of the planet is largely over, but in

which there remains a compact disk (or nebula) of gas and solids that can form a satellite

system similar to that which exists today around Uranus. The remnants of this original

Neptune satellite system are seen close to Neptune. In any event, Triton passes through this

disk, and is slowed enough to be permanently captured.

In all gas drag models there is substantial orbital evolution, due to gas drag, after the

initial capture. In principle, Triton's orbit can shrink and completely circularize, attaining

close to its present orbital configuration by gas drag alone. In fact, unless gas drag

evolution halls, Triton's orbit will continue to decay, and it will eventually be torn apart by

tides when it is very close to Neptune. This has not happened, of course, and thus gas drag

models rely on the gas near Neptune being dispersed (such as by the T Tauri wind that is

thought to have cleared away the solar nebula) before this could have happened, leaving

Triton stranded in a retrograde, but uncircularized orbit. This is most plausible if Triton is

captured close to the end of Neptune's accretion, so the version of the gas drag model by

Leith and McKinnon is favored on this point.

Leith and McKinnon also show that gas drag capture by a protosatellite disk is favored

because the time scale for gas drag evolution can be prolonged by two effects, thus making

it more likely that Triton outlives the gas. The first effect is that solar perturbations cause

Triton's eccentric and elongated capture orbit to markedly oscillate. Specifically, the point

of closest approach, or pericenter, of Triton's orbit varies such that sometimes it is within

Neptune's disk or nebula, and sometimes it is outside. If it is outside, then Triton's orbil

doesn't evolve by gas drag at all during that orbit, and the overall effect is that Triton can

take more than 10,000 years to spiral in. Furthermore, Triton is sufficiently massive

compared with the estimated mass of the Neptune disk or nebula that it may be able to clear

out zones or lanes within the nebula. Once this happens gas drag evolution will halt

altogether. From this point on, Triton's orbital evolution will be controlled by tides (the

topic of the talk by McKinnon and Benner), and be much slower.

'l'he other capture mechanism is collision with an original "regular" Neptune satellite

(one that would have formed from the Neptune nebula above). This was proposed by Peter

Goldreich and co-workers at Caltech last year. Here, a collision, after Neptune's satellite

system has formed, causes Triton to move from solar orbiting to Neptune orbiting in a

single (cataclysmic) step. All further evolution is controlled by tides, or possibly by further

collisions (and actually, during orbital evolution by gas drag, collisions may also occur with

satellites that have formed or are in the process of forming). The post-collision orbit is a

very elongated ellipse, taking Triton from several Neptune radii (RN) from the planet to
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possibly greater than 2000 R N. The post-gas-drag orbit would likely be similar, but not so

elongated.

Tidal Heating

McKinnon was the first to point out, in a 1984 paper in the British journal Nature, that

a captured Triton would likely undergo massive heating as its orbit was circularized and

shrunk by tides raised on it by Neptune. In that paper, Triton was estimated to have

completely melted, with the most volatile components of its possible makeup (CH 4, N 2,

etc.) being driven to the surface. These volatile ices had been identified spectroscopically at

the time, and their presence on Triton's surface was confirmed by Voyager. The possibility

of a Triton melted by tidal energy was reiterated by Goldreich and co-workers in their paper

of last year.

The time scale of tidal evolution is an important quantity to estimate. The simplest

model of the dissipation of tidal energy assumes that Triton remains solid throughout its

orbital evolution. It predicts that a Triton with an extremely elongated elliptical orbit,

extending to the edge of Neptune's gravitational sphere of influence, takes almost 109 yr to

evolve inward and have its orbit circularize. This is significant because (1) the time scale is

more than twice as long as predicted in McKinnon's 1984 paper (because Triton's radius

was then unknown but thought to be near 1750 km, whereas it is now known to be a much

smaller 1350 km) and (2) the time scale is much longer than the estimated duration of heavy

cratering in the outer solar system (-500 million years). Therefore, the "new," smaller

Triton could have stayed hot well beyond the era of heavy cratering, and it could be

predicted that little if any of the heavily cratered terrains seen on nearly all of the other icy

satellites would be observed on Triton by Voyager. (It is significant that the icy satellites

without heavily cratered terrains are Europa, Enceladus, and Ariel, all of which are being or

have been tidally heated.)

These simple models, which assume that Triton remains solid, ca_mot be correct in

detail, because so much of Triton's orbital energy is dumped into the satellite that it must

melt. More complex models are necessary, the subject of this LPSC talk.

McKinnon and Benner first determine how soon Triton begins to melt once tidal

evolution starts, that is, after the capture collision or after gas drag evolution ceases. It turns

out that Triton is so rock-rich, approximately 70% rock by mass with the other 30% being

ices, that it is likely that Triton would begin to melt its ice and unmix, or differentiate,

spontaneously, because of the energy liberated within the satellite by radioactive element (U,

K, and Th) decay. Only by deliberately choosing parameters that lower Trito_'s internal

viscosity is it possible to build an internal model of Triton that convects without melting.
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I Iowever, even for very elongated initial orbits that extend to the edge of Neptune's sphere

of influence, the tidal energy dissipated during individual passes close to Neptune is, time-

averaged, comparable to the power due to radioactive element decay. Therefore, it is very

unlikely that melting can be significantly delayed. Only if Triton is captured cold will

melting be put off, perhaps -100 m.y. The best estimate is that Triton will begin to melt

promptly. Incidently, Triton's rock abundance is very similar to that of slightly smaller

Pluto, which is further evidence that Triton was born in solar orbit and was then captured.

Melting and differentiation are interesting because they are partially self-sustaining. The

gravitational energy of tmmixing liberated (by moving rock to the center ,and ice to the

outside) is approximately 30% of that needed to melt Triton's ices. Therefore, continued

radiogenic and tidal heating are necessary to push Triton all the way to complete

diftk'rentiation. This is greatly aided by the fact that the tidal dissipation in a differentiating

body increases wildly compared with that in a solid one. The dissipation increases because

of abundant "hot" ice (ice near the melting point), transient multiphase regions such as

ascending slush and descending mud diapirs, and because the opening up of an internal

ocean allows greater tidal flexing. Calculations suggest that Triton will differentiate in under

107 yr, and possibly much less. The result is a liquid water ocean, approximately 350-400

km deep, capped by a thin, conductive ice shell, overlying a rock core.

Continued tidal heating in the core causes it to heat up and melt as well. The ultimate

tidally heated configuration for Triton is nearly totally molten. A thin water-ice shell tops a

liquid water mantle, and thin rock shell tops a liquid silicate core; this lower shell may be

negatively buoyant, though, and may turn over as on a lava lake. There may be an inner

core of liquid iron-sulfur, but no iron shell because the freezing point of the core is less than

that of the molten rock mantle. We ignore for the time being any other ices, such as

methane (CH4) and nitrogen (N2), that might form a surface ocean.

Once Triton melts, and it needs only a small portion of the total orbital energy

potentially available to it, its orbital evolution actually slows. This seeming paradox results

from the fact that dissipation in a liquid Triton is largely confined to the thin solid shells

described above. The hot, near-melting portions of both shells are quite dissipative under

tidal forcing, but the shells are at most only a few km thick. Of course, tidal flexing is at its

maximum for a liquid body, but the total effect is still to stretch out Triton's orbital and

thermal evolution due to tidal heating. Thus McKinnon and Benner conclude that a nearly

totally molten Triton may stay hot for an extended length of time, greater than 500 million

years. Therefore, as with the simple model of tidal heating above, it is predicted that Triton

should not have retained any early record of heavy cratering. This conclusion was

originally presented by McKinnon at the Fall 1988 AGU Meeting, in advance of the
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Voyager Neptune encounter, but the results presented at this (LPSC) conference take

advantage of the new knowledge of Triton's size and mass.

The Evidence from Triton

The question now is whether tidal heating and melting are required to explain the

absence of heavily cratered terrains on Triton. This depends on the composition of the

surface. If at least portions of Triton's surface are made of close to pure water ice, as in the

models discussed here, then ancient craters could survive in these cold, rigid regions in the

absence of tidal heating and associated geologic activity. Thus tidal heating would be

required to explain Triton's present appearance. If, however, there is a crust of lower

melting point ices (such as nitrogen and methane, mentioned above) greater than a few km

thick, then continuing volcanic and other activity in this relatively soft layer driven by

present-day radiogenic heating inside Triton could, by itself, probably destroy any ancient

crater population. In this case, tidal heating is not required. Hence, in order to use Triton's

appearance to determine whether massive tidal heating actually occurred, detailed geological

analyses will be necessary to constrain the composition of Triton's surface layers.

Further work should also involve more detailed characterization of the volatile ices

during the tidal heating epoch. This may lead to new constraints on the amount of tidal

heating Triton experienced. During the time when Triton was mostly liquid, a surface ocean

of CH 4 and N 2 liquid probably existed, overlying the water-ice shell describcd above. It

may have been capped by a CH4-ice shell, but this would have been too thin to affect the

tidal heating and orbital evolution of the satellite. However, a tidally heated Triton would

have a hotter surface than it does now, which means a substantial CHa-N 2 greenhouse

atmosphere, so it may have been too hot for surface methane ice.

There are many questions for the future. What chemical processing occurred in the

hotter, thicker early atmosphere, and could this be linked to the absence of atmospheric

carbon monoxide (CO) today? CO is predicted to occur, based on the coml:x)sition of

comets, and a captured Triton may represent the largest surviving cometary body known in

the solar system. What chemical processing occurred in Triton's early water ocean? What

happened to the abundant organic material that was likely a part of the satellite (>10% by

mass according to the cometary model) during the era of extreme tidal heating? Study of

this marvelous moon is only beginning.
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Oberbeck, NASA Ames Research Center, Moffett Field CA, 94035, J. R. Marshall,

Arizona State University, Tempe AZ, 85287, D. E. Schwartz, SETI Institute, Mountain
View CA, 94043

For many years, man has been intrigued with the possibility that life might exist
elsewhere in the universe and, in particular, on the planet Mars. Much of the interest

was generated by the work of Percival Lowell who made elaborate maps showing a

supposed network of canals on the planet's surface. Of course, recent space

missions have shown no such evidence of canals constructed by advanced

civilizations. They have, however, shown river-like channels on much of the planet's

surface and a variety of different types of terrain. The river-like channels provide
evidence that at some time in the planet's history water was present at the surface.

This, combined with numerous other facts, persuaded many that Mars was the best

planet to search for evidence of life. Consequently, the Viking missions were
conceived and several experiments were conducted to look for evidence of life at the

landing sites. Most of the data taken during these experiments have been

interpreted to be inconsistent with biological activity 1. For example, one of the

Viking experiments attempted to test for the presence of life in soil samples by
feeding nutrients to the supposed organisms in order to test for the production of

carbon dioxide. The experiments were developed under the assumption that
carbon-based life, like that on Earth, would produce carbon dioxide as a metabolic

by-product. When the experiments were performed on Mars at the Viking lander

sites, carbon dioxide was emitted from the soil samples, but the control samples (that
were sterilized to kill any potential Martian organisms before the nutrients were

added) also produced carbon dioxide. Because the Viking experiments gave no

conclusive evidence that life existed at the surface of Mars, many took this to mean
that life could never have originated on the planet.

Recently, new results in the scientific fields of astrophysics, planetary geology,

and planetary meteorology and climatology have encouraged us to remain optimistic
about the possibility that life might have originated on Mars in the distant past. It is

now believed that liquid water was present in the very earliest geological periods of

both Earth and Mars, and water is, of course, one of the major requirements for life
as we know it. The theory for the origin of life, by chemical evolution, involves the

production of complex organic compounds from initially simple ones like amino

acids. These organic compounds could have been produced by processes occurring
in the atmosphere in accordance with some recent scientific hypotheses.

Alternatively, they could also have been brought into the early atmospheres of Earth
and Mars by comets and interplanetary dust.

A current hypothesis suggests that large impacts of planetesimals or asteroids

during the earliest period of history of both planets would have interrupted the

process of chemical origination of life2,3, 4. Giant impacts may have frustrated the

establishment of life on Earth by sterilizing the entire planet; this probably occurred

several times before life could establish its current ancestry. The time between such

giant impacts just before the oldest evidence of life on Earth (3.8 billion years) has
been used to estimate the maximum time required to originate life 3. This time

interval could have been as short as 2.5 million years just before 3.8 billion years

ago. Thus, life on Earth may have been able to originate very rapidly in an
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apparently hazardous impact environment. It has been proposed that the time
available between planetary sterilizing impacts on Mars exceeded the time required
to originate life on Earth. It is noteworthy that these favorable time windows occurred
during the geologic period before surface water and prebiotic reactants vanished on
Mars (3.8 billion years ago) 4. Thus, even the existence of a heavy bombardment of
planetesimals or asteroids on Mars would not necessarily have prevented the
origination of life.

Mars remains the most likely extraterrestrial planet upon which life could have
originated. For this reason, we are motivated to renew our search for life on Mars.
Our experience from the Viking mission, however, teaches us that the search will be
a very difficult one. If life does exist on the planet, it is difficult to detect using indirect
sources of evidence. If life did exist at one time, and now is extinct, fossil evidence

may be buried or scarce and difficult to locate. Any life existing on the planet today is
probably beneath the surface and will be difficult to recover. This search can be
made a good deal easier if we had some idea of the geological conditions that

favored the origin of life because we would then know where on the planet to search
for the evidence. Although a great deal has been discussed about potential Martian
life itself, until now no specific models have been forwarded that consider the

geological processes that could have led up to the appearance of life.
We begin our model by defining the conditions on the planets' surface when the

harmful impacting planetesimals and asteroids were least traumatic and while liquid

water still existed at the surface. This time is just before 3.8 billion years ago at the
end of the geological period referred to as the Noachian. During the first 800 My of

the history of the solar system, all of the terrestrial planets accreted planetesimals
and experienced an ever decreasing rate of planetary bombardment. Based on
knowledge of the lunar uplands 5, this bombardment produced a thick layer of
crushed silicate crust on both Mars and Earth. Some of the silicate minerals in the

crust could have been converted to clays if water had been present. Evidence for the
possible presence of clays on Mars, and other planets, comes from the discovery that
certain classes of meteorites contain clay minerals believed to have been formed in
hydrated regoliths on planetary surfaces 6. Therefore, we believe that it is likely that
clay minerals existed in the ancient soil of Mars. Comets delivered sufficient

quantities of water to produce oceans on Earth similar in size to those present today.
Comets impacting Mars delivered enough water to produce 10 to 100 meters of
water which may have been retained for some period of time on the planet 7.
Although some of these theoretical studies suggest that liquid water may have
initially covered Mars, such oceans would have been absent by 3.8 billion years ago
because stream like features are present in many places by then, and many of the
old impact craters are still present. The shapes of the channels suggest that small

amounts of running water existed and that intermittent precipitation fed subsurface
aquifers. Water from the water table came to the surface in springs at the heads of
sapping channels that contained intermittent flowing water 8. We believe that the
geologic and meteorologic conditions of this environment were at least as favorable,
and probably more favorable, for the origin of life as conditions that existed on Earth
when life originated.

On the basis of this theoretical and empirical information, we propose the
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following scenario for the chemical evolution of life on Mars: Important prebiotic
organic reactants were supplied to the planet by comets, interplanetary dust, and
carbonaceous chondrites. One source of evidence for this transport mechanism
comes from the fact that a large object from space, believed to be a comet, caused
an impact that deposited a uniform layer of clay at the Cretaceous-Tertiary boundary.
Especially large amounts of amino acids have recently been discovered in
association with these deposits9. Ultraviolet light and lightning on early Mars further
provided the energy to produce photochemical reactions between CO2 and
hydrogen. Chemical compounds that could have been used for chemical evolution
leading to life would have been cleansed from the atmosphere when raindrops
collided with them and carried them to the surface; this process is known as
"scavenging" and we know from our own experience on this planet that atmospheric
chemicals become readily incorporated in rain drops. During the time that reactants
were incorporated in rain drops, the simple organic compounds from space and
those made in the atmosphere would have taken their first steps toward evolving into
more complex polymer compounds. The development of complex, organic
compounds is an important step in the chemical evolution of life.

We believe that many of these reactions would also have taken place in the
crushed silicate layer present at the surface of Mars because it has been previously
discovered that clay particles are very beneficial for triggering these types of
polymerization reactions. The soils and deeper aquifers of Mars (comprised of this
crushed silicate and clay material) would also have provided an excellent
environment for the next level of chemical evolution: the formation of very complex,
high molecular weight organic compounds. Solutions of simple compounds would
have been moved though the soil and permeable rocks as a result of fluctuating
levels of groundwater, soil leaching, capillary action, and natural percolation/filtration
processes. This would have subjected compounds in the water to repeated cycles of
hydration, dehydration, and redistribution on clay particle surfaces; the net result
being the formation of macromolecules 1°. Over a long period of time, the crushed
silicate layer acted as a large chemical processing column to form organic polymers
of increasing complexity.

The next stage of chemical evolution of life took place in the bottoms of sapping
channels or in the lakes that they emptied into. Ground water percolating through
the crushed surface layer of rocks would have come to the surface at springs at the
amphitheater heads of sapping channels. These channels are widely observed on
the surface of the ancient cratered terrain of the planet. Complex polymers that were
produced in the water-bearing rocks (particularly at the water table) would, at this
point, have developed to cell-like structures. It has been discovered that organic
polymers, when dropped into water, often form small spheres called coacervate
droplets. These could represent primitive cell-like structures capable of a certain
degree of independence from their environment. This would have permitted some
interchange of biochemical compounds with the environment. The emergence of
organic compounds from the ground into sunlight would now enable solar radiation
to be utilized as an energy source to drive further chemical organization. Eventually,
life may have originated in concentrated aqueous solutions at the bottoms of sapping
channels or in the lakes and seas into which they discharged.
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Such a model for the chemical evolution of life on Mars compares favorably with
the existing model for the origin of life on Earth. Life on Earth is believed to have
originated in the primordial "soup" of organic compounds in the ocean. Simple
organic compounds produced in, or supplied to, the atmosphere in the same manner
as that described above, settled into the ocean and became concentrated in this
environment. However, on Earth, it would have taken longer for these compounds to
have become concentrated because they would have initially been present in a
much more dilute solution of ocean water; in the shallower water bodies initially
present on Mars, solutions would have been more concentrated. The fluctuating
levels of groundwater in the soil layer of Mars would also have permitted cycles of
wetting and drying more efficiently than would have been possible in an oceanic
environment. Repeated wetting and drying in the presence of clays promotes the
development of complex organic compounds. We conclude that Mars not only
provided an ideal geological environment for prebiotic chemistry, but it also provided
an environment in which reactions could have occurred more rapidly than on Earth.

References: (1) Klein H. P. (1978) Icarus 34, 666 (2) MaherK. A. and D. J.
Stevenson (1988) Nature 331, 612-614 (3) Oberbeck V. R. and G. Fogleman
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Results of the Viking mission to Mars provided no compelling evidence that extant

life is present on the planet's surface. This apparent lack of evidence stems from

experimental data which, at times, gave signals that could be interpreted to have
been caused by organisms. But the soil samples that had been sterilized also gave

the same signals. This has since been explained by probable inorganic oxidation

chemistry in the surface soil1. Because Mars (of all of the planets in the Solar

System) is the planet whose early clement history most resembles that of early

Earth, it is the planet of choice on which to search for evidence of the origin of life.

This remains the primary driver for further scientific exploration of Mars. The

discovery of evidence for either extinct or living organisms on Mars would

profoundly affect mankind because it would suggest the possibility that life may
have originated in many places in the universe. Even if there were no living

organisms at the Viking sites, that does not preclude the existence of life elsewhere.

Most of the promising, potential Martian habitats were not explored. For example, no

subsurface searches in potential water tables on Mars were made, nor were the

bottoms of ancient river channels or lakes searched. Thus, we have hardly begun a

proper search for evidence of past or present life on Mars. If after an extensive

search we conclude that life never originated on Mars, this in itself would be a very

significant finding. We would be forced to ask the question "why did life not
originate on a planet so similar to ours?"

What is the basis for assuming that life may have originated on Mars? First of all,

the planet was supplied with prebiotic compounds (simple chemicals that can react

to eventually produce life) from comets and carbon-bearing meteorites, as was
Earth. In addition, liquid water probably existed at the surface until about 3.8 billion

years ago2, 3. These are two critical requirements for life to have originated by

chemical evolution. Both early Earth and early Mars were subject to intense

bombardment by planetesimals and asteroids which could have, at first, prevented

the origin of life. It is interesting to note that the time between large impact events

was actually longer for Mars than Earth, and thus the planet had available to it

longer time windows for life to originate. Consequently, there could have been

sufficient time for life to originate on Mars before 3.8 billion years ago. If life existed,

it may either have become extinct at the surface, leaving behind fossils, or persisted

in deep groundwater after 3.8 billion years ago. This implies that evidence for live

organisms should be sought beneath the surface. It further implies that evidence of

extinct life should also be sought beneath the surface and in the older surface

terrain, because this is the only part of the Martian surface where rocks and soils of

this ancient era would be preserved.

The National Research Council (NRC) recommended searching for four types of

indirect evidence for organisms on Mars 4. These include liquid water, organic

compounds, electrolytes, and biogenic gases, but the NRC points out that these are
not evidence that life exists. This indirect type of evidence was among the types

sought by the Viking mission. So long as chemical processes exist that generate
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products which can be confused with byproducts of life, missions searching for
indirect evidence of life will result in inconclusive measurements. Conclusive

evidence for life cannot be sought with Viking style missions 5, nor do we believe it

can be sought with other types of unmanned craft.
Considerable efforts have already been expended in deciding what types of

information and instrumentation will be required to search for evidence of life on
Mars. There has been a considerable discussion of the types of probes that might

be used to place instruments beneath the surface of Mars where indirect
measurements of the type discussed above may be made. For example, penetrators
could conceivably deploy instruments that could search for this indirect evidence of
life beneath the surface. Penetrators, however, can only deploy small payloads to a

limited depth in a finite number of places. At best, the results obtained would only
provide inconclusive evidence for life on Mars. Therefore, we believe that the
search for living organisms beneath the surface will be difficult indeed. One
anticipated difficulty of using a penetrator is simply that the water table might be at a
greater depth than can be reached by the probe. Instead, deep bore holes may be
required to reach the water table and elaborate sampling techniques may be
necessary to obtain unequivocal biological samples. This type of complex and

difficult task requires a human presence.
The search for fossil evidence of life at or beneath the surface will also be

extremely difficult. Because the original amount of organic matter was probably
small, and because there has been extensive reworking (by wind, water, and ice)
and burial of original material, fossils would be scarce and difficult to find. For
example, only a centimeter layer of fossiliferous material may exist in hundreds of
meters of sedimentary rock. The search for such layers could be very
time-consuming and would require painstaking field analysis and detailed
examination, in addition to the knowledge and experience of highly trained mission

specialists. Artificial intelligence techniques that could be used on unmanned
surface vehicles (e.g., rovers) could be useful for preliminary, reconnaissance
efforts, but during a detailed search, could easily mistake inorganic artifacts for fossil
remains. It is difficult to envision how a successful search for fossils could be

carried outwithout preliminary geological field surveys followed by exhaustive

on-site laboratory investigations conducted by humans on Mars.
From an exobiological standpoint, and indeed from any scientific standpoint, the

ecosystem is as important as the organisms within the system. Ecology defines the
limits for the origin and continued evolution of living systems, and therefore places
terrestrial ecosystems in a universal context. If organisms are discovered on Mars
we must gain an understanding of the relationship of the organism to its
environment in order to determine the range of environments that might harbor life
in the universe. In the event that living organisms are found, they will need to be
studied in situ. Why is this necessary? Because interrelationships between

organisms and their environments are so complex, it is essential to study organisms
in their natural habitat. For example, two elements that are important to organisms
are nitrogen and sulfur. In terrestrial ecosystems, we know that cycling of these

elements requires a community of co-existing organisms working in concert with the
environment. Changing the environment leads to significant changes in the cycling.
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The types of in situ studies that would be required to determine biogeochemical

cycles in these ecosystems would be vastly compromised if they were directed from

a different planet. The study of ecosystem dynamics can only be accomplished by

humans inhabiting a Mars base equipped with a laboratory. The necessity for in situ

studies is well illustrated by the hydrothermal vent ecosystem on the Earth's ocean

floor. The life present in this ecosystem must be studied in situ because most

organisms die when brought to the surface. Although they exist deep below the
surface, and are difficult to study, an understanding of the ecology has warranted
the use of manned submersibles.

It has recently been discovered that a large biomass of microorganisms extends

to great depths within terrestrial aquifers 6. It seems reasonable to assume that

possible Martian aquifers may have been similarly colonized by microorganisms.

The investigation of this ecosystem on Mars may be analogous to its investigation

on Earth because of engineering problems associated with drilling and recovering

pristine samples for analyses. Complex drilling and coring tasks in rugged Martian

terrain can only be performed by humans operating from permanent bases that

provide laboratory support facilities. Also, the careful field analysis of possible

groundwater systems, required as a precursor to extensive drilling, cannot be

achieved with unmanned landers. Careful drilling operations permit a portion of the

environment to be brought into the laboratory (using sealed drill casings), thus

enabling one to closely approximate the in situ environment for a short period of

time before the sample deteriorates. These samples would not survive

interplanetary transport to Earth laboratories.

The history of comparative planetology tells us that it is precisely the opportunity

for the study of physical and chemical processes in different planetary settings that
has offered completely new insights into planetary processes acting within our own

terrestrial environment. The presence of humans in a permanent base on Mars will

permit similar new perspectives on the importance of processes that are integral to
the origin of life in a planetary context. Because the positive results of a search for

conclusive evidence for past or present life on Mars would have profound

implications for mankind, and because of the difficulties just discussed that are
inherent in the search, we believe that this search is compelling justification for a

permanent science base on Mars.

References: (1) Klein H. P. (1978) Icarus 34, 666 (2) Oberbeck V.R. and G.

Fogleman (1989) LPSC XX, 800 (3) Pollack J. B., J. F. Kasting, and S. M.

Richardson (1987) Icarus 71, 203-224 (4)Committee on Planetary Biology and
Chemical Evolution, Space Sciences Board, National Academy of Sciences, 1977

(5) Hartman H., J. G. Lawless, and P. Morrison (eds.) (1985), NASA SP-477 (6)

Phelps T. J., E. G. Raione, and D. C. White (1988) U. S. Dept. of Energy,
DP-MS-88-100.
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LARGE SCALE OBLIQUE IMPACTS ON THE EARTH ; Jotul D.
O'Keefe and Thomas J. Ahrens, Seismological Laboratory 252-21, California Institute of
Technology, Pasadena CA 91125

The impact of large bodies is an important factor in the accretion of the terrestrial planets, the

genesis of their atmospheres 1234, and possibly the evolution and extinction of life. The

phenomena associated with impact of large bodies on the earth with its attendant atmosphere has
been numerically simulated 5 o and measured in small scale laboratory experiments 7. These

studies were of impacts normal to the earth's surface. Here we address the more probable cases
where the impact angles are oblique.

We have calculated the flow fields for normal and oblique impacts using a two-dimensional

numerical computational algorithm 8. This two-dimensional algorithm accurately models the flow

field for normal angle impacts because the flow field has axial symmetry. In the case of normal
impacts, the pressure and density are approximately constant across the front of the bolide, while at
impact angles less than 90 o, the pressure and temperature vary exponentially with the atmospheric
scale height. As for normal impacts, the shock wave in front of the bolide encounters the planet
surface and reverberates between the bolide and the planet until the bolide strikes the surface and
drives a radial conical shock which results in a 40 km/s radial jet of atmospheric gas emanating from

the impact zone.
In the case of oblique impacts, the algorithm is an approximation to the three-dimensional flow

field, most accurate in the plane normal to the planet's surface which contains the impactor
trajectory. We previously used this technique to calculate the impact angles and velocities required

for significant jetting and entrainment of planetary material 9.

Both the atmosphere and the planetary surface are included in the model. The atmosphere was
assumed to have a scale height of 7 km. The impactor diameter is 10 km and its velocity is 20 km/s.
The flow fields were calculated for impact angles ranging from 90°(normal) to 25 ° to the planetary

surface. The flow-field resulting from passage of the impactor through the atmosphere was

analytically calculated and used as the initial conditions for the numerical simulations 5. We
assumed that the bolide was incompressible during the passage through the atmosphere (Fig. 1).

The wake field behind this Mach 58 bolide was found to have a < 1° sheath travelling at 5
km/s. The front surface of the bolide was slightly flattened in a plane normal to the trajectory. A
bolide with a diameter greater than the scale height, the atmosphere it encounters is trapped in front
of it prior to impact. In the case of fairly oblique impacts (angles < 45"), there is not a significant
amount of shock interaction prior to impact with the planetary surface and the amount of
atmospheric jetting is reduced. In addition to jetting of the trapped atmosphere, there is jetting of

the bolide and planet. O'Keefe and Ahrens 2 showed that at 20 km/s obvious jetting of planetary and
bolide material occurs for impact angles in the range of 60 to 15 °.

Preliminary flow fields for an impact angle of 25 ° are shown in Figs. 1 through 3. At this angle
there is little jetting of the atmosphere prior to impact with the surface and most of the atmosphere
is trapped in front of the bolide. The air shock pressures prior to impact in front vary from 6.9
kbars at the surface to 1.9 kbars at top of the face. As the bolide penetrates the planetary surface,
the air shock is reflected from the planetary surface in front of the bolide. Subsequently, because of
the interaction of the bolide and the planet, a strong jet of vaporized material followed by melt and
solid material is produced. The jet and following materials propagate parallel to the planetary
surface and the vapor drives a strong shock in the atmosphere (see Fig. 3). The oblique impact
case differs from the normal case in that the ejecta is propelled into a quiescent atmosphere,
whereas in the latter the ejecta is propelled after reflections of the atmospheric shock waves create a

radial flow field that is parallel to the ejecta trajectories 5. Because the forward jet is parallel to the
planetary surface it transfers energy more effectively to the dense part of the atmosphere than
normal impacts. The relative greater efficiency of oblique impact in providing sufficient energy for
atmospheric escape will be discussed in detail in future work.
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Figure 1 The atmospheric flow field at the time the impactor
just hits the Earths surface.This is the initial condition for the
numerical simulation shown in figures 2 and 3 The impact
velocity is 20 km/s and the impact angle is 25*. The impactor
radius, R, is 5 kin. The horizontal line of dots in the
atmosphere and earth are markers which show displacement in
the subsequent flow.
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Figure 2 Flow field at dimensionless time = 6.5 (impactor
diameter divided by velocity)
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Figure 3 Pressure contours at dimensionless time = 6.5. Peak
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60, 75, and 90 percent of peak value.
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The Magellan Mission to Venus will undertake the ambitious

task next year of mapping our sister planet, Venus. Venus, is

nearly the same size as Earth, and since it has no oceans, the

surface area is nearly four times the land area of our planet.

The Magellan science team hopes to learn why Venus evolved so

differently from Earth, with its surface temperature hot enough

to melt lead and its thick carbon dioxide atmosphere.

Magellan will arrive at Venus on I0 August 1990 and begin

radar mapping of Venus about 1 September. A radar imaging

system, called synthetic aperture radar, is needed to see the

surface through the thick, cloudy atmosphere. The resulting

images, however can be interpreted in much the same way as aerial

photographs or spaceborne television images. The objective of

the mission is to map the planet at a resolution of 120 m to 360

m resolution (400 to 1200 feet). The spacecraft, controlled from

the Jet Propulsion Laboratory, will be placed in a 3.1 hour, near

polar orbit. On each orbital revolution Magellan will map a

strip of Venus about 25 km wide (16 miles) and 17,000 km long

(i0,000 miles). In this way, nearly 90% of the surface can be

mapped in the 243 day mission, equal to one Venus day.

A global geologic map of Venus will be produced at a scale

of 1:15 million. This map will be compiled from many individual

geologic maps using mosaicked images in the form of prints at a

scale of 1:2 million. Topical maps will also be produced at the

same scales to show the distribution of impact craters, volcanic

flows, mountainous ridge belts, faults and other tectonic

features, the mysterious coronae seen in the Soviet Venera radar

images, and other geologic features. Special maps for

geophysical analysis, including gravity, topography, surface

radar properties, and microwave emission, will also be

constructed.

Since Venus is so large compared to the other planets the

task of producing even a preliminary map of Venus is enormous.

The Magellan spacecraft will return as much image data as all of

the NASA planetary imaging missions to date. This large amount

of data requires the use of new technologies, such as compact

disks (CD-ROM) for data distribution.

The Magellan spacecraft, launched from the Space Shuttle
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Atlantis on May 4, 1989, will arrive at Venus on August i0, 1990

after its 462 day trip from the Earth. The data it collects will

represent nearly three times improvement in coverage and ten

times improvement in resolution over previous data of Venus. The

longitude of arrival at Venus is about 276 degrees East, and

Venus turns beneath the orbit track 1.48 degrees per day. An

In-Orbit-checkout (IOC) period of 21 days is planned before the

start of mapping. During IOC some imaging is planned as early as

Day 6 (August 16) (about 286 deg. longitude). Multiple mapping

swaths are planned for day 12 and some image data may be obtained

on Day 17, as part of tests of the radar. Mapping will start on

Day 21 (August 30, 1990), with the caveat that the best

parameters for operating the radar may not yet have been

determined. During the first few weeks of the mission, major

questions about the geology of Venus will be answered as many

different types of features and terrain are imaged. In addition,

many new questions will be raised as discoveries are made.

During IOC radar tests, a range of types of features may be

imaged:

DAY 6 -

DAY 12 -

DAY 17 -

Eastern Beta Regio and Devana Chasma

Golubkina and Lagerlof Craters

Brooke Crater

Atropos and Lachesis Tessera
Demeter and Pomona Coronae

Tefnut Mons

Dashkova and Ivka Craters

Otau Corona

Venera 13 landing site

In spite of its thick atmosphere (90 times as thick as Earth's),

Venus appears to have impact craters. In some ways we might

expect Venus craters to resemble those that could form on the

floor of shallow seas on Earth. The impact craters that Magellan

will image early in the mission are of differing size and degree

of preservation; for example, Golubkina is a 28 km diameter

relatively fresh bright halo crater while Dashkova is a 48 km

across eroded crater. What processes are causing the erosion of

surface features? Faults associated with a major rift zone

(Devana Chasma) in Beta Regio will be covered on Day 6. The rift

in Beta has been compared to the East African rift (I), and will

enable us to learn more about how rifting operates on the Earth
as well as Venus.

Several types of features discovered by the Soviet Venera

15/16 spacecraft in 1984 will be imaged during IOC including

tessera (complexly deformed highland regions) and coronae (170-

690 km across circular structures) (2). Both of these may form

by processes operating on the Earth, but may have been

extensively modified under Venus conditions. Coronae may form

over hot spots, similar to Hawaii. On Venus, temperatures are so

high that rock can behave more like a fluid (3, 4). High

topography associated with features such as coronae may 'flow'

away in the geologically short time of about i00 million years

(much less than the 1.0 billion year age of the surface
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determined with previous data (5)) (6). The tessera terrain alsQ

may have undergone this process, called gravitational relaxation

(7). Head (8) has compared the morphology of the tessera terrain

to the Earth's seafloor. This analogy can be more fully tested

as Magellan sends back high resolution images and altimetry of

several different tessera regions during the first weeks of

mapping by Magellan. Also covered during IOC is the landing site

of the Soviet Venera 13 spacecraft. The lander sent back images

of a surface covered with soil and platy rocks of basaltic

composition (9). Magellan will provide the link between the

ground truth obtained by the lander and lower resolution global

data sets such as Pioneer Venus.

DAY 21- Nominal start of mapping

The planned start of mapping occurs at the western edge of

Ishtar Terra. The radar will map from 80 deg. N to about 67 deg.

S. Ishtar Terra is a region of topographically high folded and

faulted mountain belts (i0). Akna Montes will be mapped from Day

21-33, Freyja Montes from about Day 29 until about Day 53. The

northern boundary of Ishtar is characterized by highly deformed

terrain (Itzpapalotl Tessera- starting Day 21) indicating a

great deal of compressional deformation and 'piling up' of

material (ii). The southern boundary of Ishtar is characterized

by a mountain belts (Danu Montes) and two steep scarps (Ut and

Vesta Rupes) of unknown origin. This area will be mapped from

about Day 25 on.

Magellan will also provide the first comprehensive high

resolution data of the southern hemisphere of Venus, including

data over regions of unknown origin such as Themis Regio, Phoebe

Regio, Alpha Regio and northern Lada Terra. Phoebe and Alpha

show some characteristics similar to tessera (12). Crustal

spreading/plate tectonics models (13) predict that a great deal

of compressional deformation should be found at low latitudes in

the southern hemisphere. Magellan will provide the answers to

these controversies.

Is there active volcanism on Venus? What can the range of

volcanic features observed tell us about questions such as the

amount and the composition of materials erupted onto the surface?

Many different types of volcanic features will be imaged in the

first few weeks, from huge caldera structures to i0 km across

domes to systems of volcanic flows 100's of kms long. In the

center of Ishtar Terra lies a high plateau (Lakshmi Planum) with

two very large (> 150 km across) volcanic calderas (Colette and

Sacajawea). In the Venera 15/16 data, systems of flows can be

seen around Colette (2, 14). Why are these calderas so elongate

and so deep? Additional, abundant volcanic features have been

imaged by Earth-based radar in the plains south of Ishtar,

including long radar-bright and dark flows and domes (15). The

order of magnitude better resolution of Magellan should enable us

to identify the sources of many of the flows, their age, and how

they erupted. Hathor, Innini and Ushas Mons in the southern

hemisphere will be mapped from about Day 27 to 33. These

features are large (>1.5 km high, >250 km across) volcanic
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shields which may be similar to plume-swell type volcanoes seen

at Hawaii.

A variety of other features will be covered in the first

few weeks of mapping. Many craters will be imaged, including the

multiple ring structure Meitner (84 km across) (Day 22) and the

'crater farm' (a close grouping of craters in the southern

hemisphere) (Day 37). Magellan will aid in determining the

impact or volcanic origin of these features. In addition, two

Venera landing sites will be imaged. The Venera 14 landing site

will be imaged on Day 21. Images of this landing site show a

surface covered with platy rocks of basaltic composition (9),

similar to surfaces one might see in Hawaii (16). The Venera 8

site will be encountered on about Day 39, and appears to be

underlain by rocks of granitic composition from lander elemental

analyses (17). Could this be a region of ancient crust or

exposed, highly evolved rocks?

One of the most important problems that Magellan will

address will be a more accurate determination of the age of the

surface. Venera 15/16 data indicate that the age of the surface

is older than that of the Earth as mentioned above, but some

estimates put the age much closer to that of the Earth's surface

(18). The other terrestrial planets (Mars and Mercury) and the

Moon have very old surfaces (about 3 billion years since any

major geologic activity). These bodies are all small, while

Venus is about the same size as the Earth. Many scientists

believe that the size of a planet determines the nature and

duration of geologic activity on the surface. A large planet

such as the Earth has more internal heat-producing elements which

drive geologic processes and thus a relatively young surface. Is

Venus really more like the Earth? Does it have active processes

such as hot spot volcanism and plate tectonics? Some believe

that Venus may provide a 'window' into the Earth's past- to a

time when the process of plate tectonics was just beginning or

had not yet begun. Magellan will provide us with a better idea

of the surface age, as well as a better understanding of the

origin of features glimpsed in earlier data sets of the

planet.
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DECAPITATED IMPACTORS IN THE LABORATORY AND ON THE PLANETS; P.H. Schultz, Brown
University, Providence, RI 02912 and D.E. Gault, Murphys Center of Planetology, Murphys, CA 95247.

Background: The partitioning of energy dudng oblique Impacts Is very different from vertical
Impacts. For vertical impacts Into sand, about 73% of the Initial Impactor energy Is expended in target
displacement Including 20% in compaction and 53% In eJecta (1). The remaining energy (27%) Is
partitioned Into waste heat and kinetic energy of the projectile. At low Impact angles (15 ° from the
horizontal), however, most of the impactor energy occurs as kinetic energy in ricocheted debris (2,
3). Internal energy in the projectile decreases as sin20 until ricocheting nearly intact at very low
Impact angles (<7.5°), even at hyperveloclties (>6 km/s) Into non-porous targets (3). Oblique Im-
pacts of ductile aluminum into solid aluminum targets have been observed to consistently produce
nearby downrange pits (2, 4). Because these enigmatic pits occur within a few projectile diameters
of first contact, they cannot be caused by hyperveloclty ballistic ejecta from the target. They ap-
peared to be produced Instead by decapitation of the projectile due to spallation.

Laboratory Experiments: Positioning the target edge close to the expected downrange rim of
the primary crater permitted Isolating the downrange Impacting fragments from the first Impact. Verti-
cal witness plates placed farther downrange recorded the dispersion and trajectories of these iso-
lated fragments. High-frame rate imaging from 35,000 fps to 2 x 10e fps (frames per second) con-
strained their velocity within about 5% and permitted deriving the size of the fragments from the size
of the impact pits through scaling relations for Identical materials (5). Aluminum and pyrex spheres
(0.635 cm spheres) were launched at hypervelocltles (-5 km/s) in order to contrast the response of
ductile and brittle materials, Aluminum targets Included a range of thicknesses (from 0.079 to 2.5 cm)
In order to explore first-order effects of Initial contact. Different targets (soft aluminum, sand, and
water) were also used to calibrate compositional effects.

High velocity Impact (5-6 km/s) of 0.635 cm aluminum spheres Into 2.5 cm thick aluminum
targets produce a characteristic ricochet pattern with a horizontal concentration and vertical strings
of more isolated impact pits. Isolation of the downrange second impacts, however_ produced only a
faint horizontal line of very small pits. In such cases, the largest pits occurred well below the impact
surface plane and only slightly (but significantly) above the projected Intercept of the original impac-
tor trajectory. For thin targets (less than 0.5 projectile diameter), the observed vertical offset
depended more on proximity to the target edge than on target composition or thickness. The vertical
offset resulting from Impacts Into thick aluminum targets typically correspond to a 10 ° change from
the original trajectory. High frame-rate photography revealed that the velocity of the fragments were
indistinguishable from the launch velocity, I.e., a loss of no more than 300 m/s. This record also
clearly distinguished the high-speed (9 km/s) jetting component from a lower speed (-3 km/s) cloud
of expanding self-luminous ejecta directed along the Impact plane. The latter component was ob-
served to unlformally plate the witness plate and pits with a microscopically thin layer of aluminum.

Discussion: The laboratory experiments clearly demonstrated that the downrange ricochet pits
Indeed result from spallation of the top of the projectile. At a 15 ° Impact angle, decapitation produces
a bimodal distribution with 4 to 8 fragments of nearly equal size and numerous smaller debris. Be-
cause these fragments did not Impact the target surface, larger fragments survive (Figure 1). The
small near-vertical velocity component of the spalled debris Is generally consistent with calculated
peak pressures based on the approach of Gault and Heltowlt (6) modified to include only the vertical
velocity component. For 5 km/s impact velocities, the shock created by first contact reaches the top
of the projectile before It has penetrated 10% of Its diameter Into the surface. Even brittle and fragile
pyrex spheres exhibited surviving fragments 10-20% of the original projectile diameter at 5.4 km/s
and 15 °. We note that oblique Impacts Into easily volatized targets (plastioene, water, carbonates) in
addition produce a significant boost to the spall velocity, most likely due to acceleration in the ob-
served impact-generated vapor cloud (7),

Hence, Internal energy losses In the projectile appear to decrease for oblique impacts owing to
spallation of the free surface. Several observations suggest, however, that Internal energy losses
along the projectile/target Interface Increase. First, the photographic records reveal a self-luminous
ejecta cloud separable from the jetting phase that expands non-ballistically--even below the target
reference surface. Second, aluminizing of thin pyrex witness plates placed just 2.5 cm above the
Impact Indicate considerable Internal but little kinetic energy in the expanding ejecta cloud. And third,
downrange discoloration of the target occurs within a broad parabolic-shaped fan. This discoloration
suggests brief but Intense heating related to ejecta, not target-transmitted shock heating. Hence, the
decrease In projectile fragmentation with decreasing Impact angle down to 15 ° Is paradoxically ac-
companied by an Increase in heating, even for impacts Into aluminum where calculated peak shock
pressures are sufficient to induce only partial melting (1). This heating is expressed not only by jetting
but also by fine Incandescent (perhaps even melted and vaporized) aluminum ejecta. We attribute
such heating to mechanical shear, a process commonly used to weld dissimilar materials, and we
suspect that Internal losses by shear heating may exceed shock-Induced losses for impact angles
less than 20-30 ° .

The downrange patterns resulting from projectile spallation observed in the laboratory have
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strikinganalogsInthe planetaryrecord.Re-examinationof the obliqueImpactrecordon theMoon
andMarsrevealsnumerousexamples of downrange re-h-npacts. The specific pattern depends on
local topography and crater size, On flat surfaces, nearby and downrange oblique Impact are readily
recognized (Fig. 2a). At low impact angles, however, local slopes can significantly affect not only the
distance between first and ricochet Impact but also can change the Impact angle of decapitation
fragments. Ricochet from oblique impacts on the floors of several large martian craters exhibit re-im-
pact craters on the facing wall that are even larger than the crater resulting from the initial impact. In
contrast, downslope collisions have produced a succession of smaller, shallower Impacts (Fig. 2b).
At the broadest scales, the initial impact and downrange re-Impact merge. Orcus Patera (450 km x
150 km) on Mars exhibits the diagnostic ejecta pattern for an oblique Impact and a series of smaller
coalescing impacts downrange. The crater Schiller on the Moon Is accompanied by a series of larger
downrange, coalescing craters due to the topographic effects of the facing wall/ring of Schiller basin.
Both morphologies can be understood in terms of the processes observed In the laboratory. Although
It can be argued that such (or some) companion Impacts reflect multiple impacts by tidally disrupted
or binary asteroids, the consistent pattern of smaller/shallower Impacts downrange on flat surfaces,
the sequence of impact, and the observed controlling effects of topography all support a process
analogous to projectile decapitation observed tn the laboratory.

Concluding Remarks" Laboratory experiments reveal fundamental differences in the partitioning
of energy with impact angle and can be supported by both first-order theoretical considerations and
planetary analogs. We feel that the process and observed phenomena provide more than Just an
explanation for enigmatic or unique Impact structures. The decreased disruption and ricochet of a
single basin-forming impactor at low angles (<15 °) could contribute significantly to a sibling popula-
tion of Impactors, particularly In satellite systems (see 8). The Increased partitioning of energy into
shear heating at more modest angles (10-30 °) could affect the formation and recycling of planetary
atmospheres (9). Finally, the combination of vapor release and embedded projectile ricochet
provides a mechanism for episodically creating orbiting debris around solid-surface planets that could
evolve into a short-lived ring (3, 10).

tooo

--_ 100

^

Ul

m

z

' "x ' ' '

"-. ,_. '\. A #umlhum p¢oJoclllle s

"" "_ ", S,Skmls

',-.. \

• '""- \-" 't 5" ""\""'

\. "....t..x_". - ,._

\ s "/ '_ 30"_,

- ::_ "'_\'_

LOG (MI/Mp)

Reteroncea: I't) Breslau. D [1970_ J Geopnys. Fies 75 3987-399.,q {2t

Gaul[. DE and WeOeklnd J (197EI} Proc Lunar Plane[ 5c_ Con' 9fr_

3843-3875 [3) $chuttz P.H and Gaull. D.E (1990) tn Proc o/CalastroDnes

in Eorrh H_story, Geol Soc 5p Paper (in Dressl (4) Summers J L {1959:
NASA TND-94. (5) Denardo. B.P et at {19671 NASA TNE)-406? I6, Gaul[
D.E Ir_ HoiIowII. E.D {1963) Proc Sixth Hy_.erveloc_tkimpact 5ym,r Vet
2 419..-456 (7) Schultz PH. {1988) In Luna," and Plane[, Sc_ XI,_ LP, Hous-
ton, 1039-1040 fell Hallen Cet at. (1990i In Lunar and Ptanet ScJ XX/
LPI, Houslon (Ih_s volume) (9) $ct'lult2 P,H {19881 Eos 6,_ p 38_ I10!
ScMuttz P H el al (19901 In Luther arl_ Plane[ Sc; XXJ LPt Hou$_oF_(this
volume).

Figure 1. Size distdDution of rmcocheling projectile resulting
from oblique impacts (referenced to horizontal) of sand
(dots) and 2.5 cm-thick aluminum (large fillecl circlesi tar-
gets. For impacts into aluminum targets, the ricochet com-
ponent was prevented from re-impacting the target sudace,
thereby preserving the actual size and trajectory of the spelled
projectile. Only the four largest spell fragments are shown for
two different velocities.

Figure 2a. Numerous craters on Mars exhibit evidence for
downrange Impact by spell fragments from the top of the
projectile. Figure 2s shows a 4.2 x 5.5 km diameter crater
with companion downrange Impact [387B06).

F_um 2b. Illustrates a 15 x 35 kin-diameter crater that Im-
pactml the downsloping wall of Kasai Vallls (519A27). Although
appearing to be the consequence of multiple impacts, the
same pattern can be reproduced in the laboratory by succes-
sive spallatton and Impact of a single proiectile



EARTH-CROSSING ASTEROIDS, 1989; E.M. Shoemaker, C.S. Shoemaker, R.F. Wolfe, and H.E.

Holt, U.S. Geological Survey, Flagstaff, AZ 86001.

The year 1989 marked a high point in the discovery of Earth-crossing asteroids. Thirteen new Earth
crossers were found during the year, five of them in one remarkable dark-of-the-Moon observing period in latc
October and early November. These new discoveries increase the total of known Earth crossers to 96,

including 9 Atens, 61 Apollos, and 26 Earth-crossing Amors. Of these asteroids, 59 have precisely determined
orbits and are now numbered, 10 are lost, and most of the remainder have been discovered too recently to have

been observed on a second apparition.
Two discoveries in 1989 of special interest were 1989 AC and 1989 FC. Found on January 4 by J.-L.

Heudier, R. Chemin, A. Maury, and C. Pollas at Caussols, France, 1989 AC is the sixth brightest known Earth
crosser (H = 14.2). It was followed at about 20 observatories around the world. An early preliminary orbit
permitted C.S. Shoemaker to find and measure prediscovery positions from films taken by H.R. Holt and
T.A. Rodriquez at Palomar on July 17, 1988. This increase in the length of the observed arc enabled C.M.
Bardwell to link 1989 AC with 1934 CT, which was observed on two nights in February, 1934, at Uccle,
Belgium. Hence, 1989 AC was actually the second Apollo asteroid to be observed at the telescope.

1989 FC was discovered at Palomar by H.E. Holt and N.G. Thomas on March 31, 1989, eight days after
it had passed within about 690,000 km of the Earth. This is the closest known approach of any asteroid to
Earth. A campaign of observations organized by E. Bowell of Lowell Observatory resulted in a good
preliminary orbit based on a 66-day arc; this orbit should be sufficient to permit recovery observations of 1989
FC in 1990, which are needed to assure that this very faint object will not be lost. At H=23.0, 1989 FC and
1988 TA are the faintest known asteroids with relatively accurate orbits. If they are S-type asteroids, as arc
the majority of known Earth crossers, they are about 200 m in diameter.

Our estimate of the population of Earth-crossing asteroids to H = 17.7, based on disc, weries to dale, is
as follows:

Number Percent Estimated

Discovered Discovered Population

(H < 17.7) (H _<17.7)

Atens 5 (5.8) 90 --- 40

Apollos 40 5.8 690 ± 300

Earth-crossing Amors 1.5 _ 260 + 130
Total Earth crossers 60 5.8 1040 --. 470

The total population is based on the rate of discovery of Apollos with the 46-cm Schmidt camera at Palomar
Observatory, and the proportions of Atens, Apollos, and Earth-crossing Amors is based on their proportions
among the discovered objects. Present evidence suggests that the discovery of Earth-cro._sing asteroids is
complete at H= 13.24, the magnitude of the brightest known object. For Earth crossers fainter than mag 15.8,
the slope of the magnitude-frequency distribution is assumed to be similar to that of main-belt astert_ids

• 92H • • •
(cumulative frequency approximately proportmnal to e°" ), as shown m Fig. 1. The frequency ewdently drops
precipitously for objects brighter than mag 15.8 (cumulative frequency roughly proportional to e2H).

A check on the inferred magnitude-frequency distribution of the Earth-crossing asteroids is provided b.v
the frequency with which Earth crossers have been accidently rediscovered. About 8 have been rediscovered
or recovered without deliberate search. Examples are (1627) Ivar, (2100) Ra-Shalom, (2201) Oljato, (3573)
1986 TO, (4179) 1989 AC, and (4183) 1959 LM, all of which were lost after their first detection. The

accidentally rediscovered asteroids are all brighter than H = 16.25; most are mag 15 or brighter. The numbcr
of discovered objects brighter than mag 16.25 is 37; the fraction of rediscoveries (6/37) suggests that discovcry
is about 16% complete and that the population is about 37/0.16_ 230 to mag 16.25. This number is close to
the estimate of 270 indicated by the dashed line in Fig. 1. At H = 15.0, 4 out of 12 known objects have becn
accidentally rediscovered, which suggests that completeness of discovery at this magnitude is about 33%; the
completeness indicated in Fig. 1 is 35%. The brightest Earth crosser, (1627) Ivar, was discovered in 1929, then
lost, rediscovered in 1957, and serendipitously recovered in 1985 with the Palomar 46-cm Schmidt. An<_lhcr

Earth-crossing asteroid as bright as or brighter than Ivar is unlikely to have escaped detection.
We have updated our estimates of probabilities of collision with the Earth for Earth-crossing asteroids,

using the equations of Shoemaker et al. [1]. Where we were unable to derive the collision parameters t'rt_m
secular perturbation theory, we used the equations of Opik [2]. The frequency distribution of collision
probabilities is strongly skewed (Fig. 2): half a dozen asteroids have collision probabilities substantially
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exceeding 10Syr "_. Mean probability of collision is 10.7 x lOSyr "1 for Atens, 4.1 x 109yf 1 for Apolios, and 1.4
x lOSyr 1 for Earth-crossing Amors. The grand mean probability of collision obtained for all categories of
Earth-crossing asteroids is 4.2 x 109yr "_. The uncertainty in this estimate probably is about 40%.

Multiplying the mean collision probability by the estimated population at H = 17.7, we estimated the prcsent

rate of collision for Earth-crossing asteroid, s to be (4.3 -+ 2.6) x 106y/1 , about 30% higher than that reported

by Shoemaker et al. [1]. The colliding flux consists of about 65% Apollos, 25% Atens, and 10% Amors.
Using improved data on the proportion of S- and C-type asteroids and the rms impact speed, weighted
according to collision probability, of 17.9 km s"1, we estimate that the production rate of asteroid impact craters

larger than 10 km in diameter is (1.4 _ 0.7) x l(ll*km2yr "1, somewhat lower than that given by Shoemaker et

al. 11] and Shoemaker [3]. The collision rate of Earth crossers to H=15.8 (roughly equivalent to S-type
asteroids with diameters greater than 2 km) is about 7 x 107yr "1; the rate to H = 13 (asteroids roughly 9 km in
diameter and larger) is about 3 x l(19yr "_.

References: El]Shoemaker, E.M., Williams, J.G., Helin, E.F., and Wolfe, R.F., 1979 i._nGehrels, T., ed.,
Asteroids, Tucson, Univ. Arizona Press, p.253-282. [2]Opik, E.M., 1951, Proc. Roy. Irish Acad. 54A, p. 165-
190. [3]Shoemaker, E.M., 1983, Ann. Rev. Earth Planet. Sci., v. 11, p. 461-494.
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DISK-RESOLVED GROUND BASED INFRARED IMAGING OF IO; J.R. Spencer,

M.A. Shure, M.E. Ressler, D. Toomey, A. DeNault, W.M. Sinton, University of Hawaii; J.D.

Goguen, Jet Propulsion Lab.

Abstract for Press Use

We have used a new infrared camera at the NASA Infrared Telescope Facility to obtain the first detailed

images taken from the Earth of the thermal radiation from the volcanos of Jupiter's active moon Io. The

images reveal the existence of a previously unknown volcano and demonstrate a powerfiil new tool for the

study of one of the solar system's most fascinating bodies.

[o is the innermost of Jupiter's four large moons. It is similar in size and density to our own Moon but

utterly different in its geology. Its shape is distorted by the tides of Jupiter, and perturbations to its orbit

by the gravity of its neighboring satellites cause constant flexing of this tidal bulge. As a result, enormous

quantities of frictional heat are produced within Io, partially melting its interior. The heat escapes in the
form of furious volcanic activity, discovered by the Voyager 1 spacecraft in 1979.

The heat radiation of Io's volcanos is readily detected by telescopes oil Earth, and has been used to

monitor the volcanic activity in the eleven years since the Voyager flyby. However, from Earth the disk

of Io is never larger than 1.2 arcseconds, about the size of a dime seen from two miles away. Because of
interference from the Earth's atmosphere even the largest telescopes on Earth can rarely see details smaller

than one arcsecond in size, so Io normally appears as a fuzzy dot of light with virtually no surface details
visible. Also, almost all the radiation from Io's volcanos is in the infrared, at wavelengths longer than 3

microns (visible light has wavelengths between 0.4 and 0.7 microns). Until recently cameras sensitive to

the appropriate infrared wavelengths have not been available, and astronomers have had to observe Io with
instruments that simply measured the total infrared radiation from the satellite, and did not produce an

image.

So while detection of/o's volcanos from Earth is straightforward, astronomers have relied on indirect

techniques to distinguish individual sources and find their positions on the surface. These have included

using very short exposures to freeze the blurring of the Earth's atmosphere, measuring the polarization of

the heat radiation, or taking advantage of the very rare occasions when another moon passes in front of Io

and blocks the radiation from each volcano in turn. Normally, only one discrete volcanic source is detected

unambiguously by these techniques, the massive volcano Loki, which completely dominates the volcanic

radiation from the hemisphere of Io where it occurs. In 1979, the close-up Voyager observations found many

smaller volcanos in addition to Loki, but there has been little chance since then to monitor the progress of
these smaller features.

Recently, infrared cameras have been developed that are sensitive to radiation with wavelengths from 1

to 5 microns and are thus capable of detecting lo's volcanos. In 1989 the nation's premier center for planetary

infrared astronomy, the NASA Infrared Telescope Facility at Mauna Kea Observatory in Ilawaii, developed

such a camera, called ProtoCAM. The development team included Mark Shure, Mike Ressler, Doug Toomey,

and Tony Denault. On the nights of 21-23 December 1989 Shure, Ressler, and John Spencer, following

suggestions by Jay Goguen and an observing proposal by Spencer, used the camera to take pictures of Io at

various places in its 1.77-day orbit around Jupiter. On the night of 23 December they made a continuous

movie at a wavelength of 3.8 microns, with frames every 3.5 seconds, of the eclipse of Io by Jupiter's shadow
and its subsequent disappearance behind Jupiter. Normally the glow of the volcanos must be seen against a

background of reflected sunlight from the disk of Io, but during eclipse only the volcanic radiation is visible,

allowing more sensitive measurements of the volcanos. Two hours later, they made a similar movie of tile

re-emergence of Io from behind JuI)iter.

On all three nights, the smallest features visible were a remarkable 0.4 arcsccond.q across. As a result,

details are easily seen on Io's 1.2 arcsecond disk. The excellent sharpness was probably due to a combination

of the good qualities of the 13,500 foot elevation Mauna Kea site, good weather conditions, and the fact

that infrared radiation is distorted less by the Earth's atmosphere than visible light. The images provide a
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dramatic demonstration of our ability to take much sharper pictures of the heavens from the Earth's surface
than was thought possible till recently.

images taken before eclipse by Jupiter show Io's disk illuminated by sunlight, with the glow of the
massive volcano Loki visible as an off-center bright spot (Fig. a). A single image like this allows determi-

nation of the position of Loki on Io to an accuracy of 10-20 degrees in latitude and longitude: preliminary
measurements indicate a position consistent with those measured by the indirect techniques mentioned above.

As lo entered eclipse by Jupiter, the edge of Jupiter's shadow could be seen sweeping across Io's disk
(Fig. b), progressively cutting off the sunlight until only the glow of the volcanos was visible. Fig. c shows

lo shortly after complete entry into Jupiter's shadow. Computer processing has been used to brighten the
features in the image, so that the glow of the major volcano Loki is highly overexposed. The complex

cross-like shape of the image is due to minute imperfections in the telescope optics, visible because of the

exceptional sharpness of the picture. On the left is the edge of Jupiter's disk, which is very dark because

of the absorption of this wavelength by methane in Jupiter's atmosphere. In about the 8 o'clock position

from Loki, half-way to the edge of Jupiter, is the faint glow of a second, previously unknown volcano. This

volcano is only 0.9 arcsecouds distant from Loki and about 20 times fainter, comparable in brightness to

some of the smaller volcanos detected by Voyager. Its position with respect to Loki places it on the other

side of the disk, in a region seen close-up by Voyager in 1979, though Voyager did not detect any volcanic

radiation from this region.

Shortly after the image in Fig. c was taken, the new volcano disappeared behind the edge of Jupiter.

Fig. d shows Loki alone, after tile disappearance of the new volcano. About two minutes later, Loki itself

disappeared. When Io reappeared on the other side of Jupiter two hours later, it was in full sunlight and the

new volcano was invisible against the sunlit disk, but the reappearance of Loki was easily seen. Because the

position of the edge of Jupiter and the orbit of Io are precisely known, the disappearance and reappearance

times of the volcanos can be used to place them quite accurately on the surface of Io, and this work is now
in progress.

These observations are important not only because they have discovered a new volcano on Io, but

because they provide a new way of finding and studying Io volcanos. The new volcano and others like it can

be seen during every eclipse of Io, providing up to 75 minutes of observations several times a month from any

one place on Earth for the eight months of every year when Jupiter is favorably placed in the sky. By taking

images at a variety of wavelengths we can determine their sizes and temperatures, thus providing clues as
to the materials involved. There is a long-standing controversy over the relative importance of sulfur and

silicate (ordinary rock) volcanism on Io, and because molten silicates can attain much higher temperatures

titan molten sulfur, the presence of even small areas at temperatures above about 800*K (1000°F) is strong
evidence for the presence of silicates.

We can determine the positions of the volcanos on Io from their locations in the images or, more

accurately, by timing disappearances and reappearances behind Jupiter, and by making observations over

periods of months or years we can learn the history of individual features. We can thus learn the lifetimes

of the volcanos and tell whether certain areas are more prone to volcanic activity than others. All these

observations will help us understand the processes driving Io's activity, and give us a much more complete
picture than previously possible of this remarkable satellite. The observations will also be of great importance

for the support of future space missions such as the Galileo Jupiter orbiter, allowing us to place the close-up

observations in a longer-term perspective and to aim the sp_ecraft instruments at the most interesting areas
on Io.

Figure Captions

Figure a. Infrared image of Io before eclipse, showing the sunlit disk and the thermal radiation from the

major volcano Loki (upper right).

Figure b. Io entering eclipse by Jupiter's. Jupiter's shadow has covered the left (western) hemisphere,
while Loki is still in sunlight.
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Figure c. Io in eclipse by Jupiter, showing the glow of the volcano Loki (overexposed) :rod a new volcano,
discovered on these images, to the lower left of Loki. See text for details.

Figure d. Io partially hidden behind the edge of Jupiter. Loki is still fully visible but lhe new volcano is

now hidden by Jupiter.



56

DRY CARBONATE FORMATION ON MARS: A PLAUSIBLE SINK FOR AN

EARLY DENSE CO 2 ATMOSPHERE? Stuart K. Stephens and David J. Stevenson, Division
of Geological and Planetary Sciences, California Institute of Technology, Pasadena,
California 91125.

Introduction: Importance of This Work

Many ideas about the early Martian climate involve the concept of a CO 2 atmosphere
with a pressure of more than 1 bar in order to explain the presence of observed surface
features (e.g., inferred high erosion rates, dendritic valley networks). One bar is about the
atmospheric pressure on Earth now (only a very small fraction of which is CO2). The present
atmosphere on Mars is a mere seven thousandths of a bar. Carbonate formation would lower
the CO 2 pressure and occurs easily in wet environments. This has been invoked to explahl
the destruction of a dense, early atmosphere on Mars. However, since surficial liquid water
would only exist (in sufficient quantities) as long as the carbon dioxide pressure was above a
level of about one atmosphere, an additional means is necessary to further reduce the pressure
of the early atanosphere. To get it to the present pressure of 7 thousandths of a bar, we
evaluate the concept of dry carbonate formation (i.e., without the presence of a liquid phase of
water). Further, we point out the implications of such a process for the evolution of the
atmospheric pressure over tnne (whether the transition from about 1 bar down to the present
value may have been quick or gradual).

The Problem

The hypothesis that Mars once had a CO 2 atmosphere with a pressure much greater than
today's value is not universally accepted because it rests on a chain of reasoning constrained
mainly by hnages from orbiting spacecraft, and not by field observations. Spacecraft
observations of dendritic valley networks, shnilar to water runoff channels on Earth, and

previous high erosion rates inferred from the degradation of craters and other features, both
indicate the possible long-term presence on the surface of substantial liquid water (transitory
rivers at least, lakes or oceans perhaps), although other explanations for some of the
observations have also been proposed. For liquid water to have existed at the surface over the
millions of years thought to be necessary to explain the observations, the temperature most
likely would have had to remain above the freezing point for that time. Given Mars' distance
from the sun, such a surface temperature could only have been maintained if the atmosphere
was dense enough that greenhouse conditions existed. Carbon dioxide is a good greenhouse
gas and an early dense atmosphere in contact with abundant surface water would have
permitted the formation of carbonates in sufficient quantities to reduce the atmospheric CO 2
pressure. However, there would have come a point as the temperature declined where the
conditions would have been insufficient for further carbonate formation in this way. The
lowest pressure at which wet carbonate formation continues would have been around 1 bar
(COtTesponding to a greenhouse temperature about equal to the freezing pohlt of water).

Tlfis work investigates an alternative sink for an early dense CO 2 atmosphere on Mars:
dry carbonate fonuation -- a process first proposed by Booth and Kieffer ha 1978.

Questions Posed by Dry Carbonate

We are very interested in the decrease of atmospheric CO 2 pressure with time once the
surface temperature drops below the freezing point. If, as we shall see, the carbonate
produced on small silicate grains forms as submicron coatings through which further CO 2
penetration is progressively limited by diffusion, then the precise dependence of diffusivity on
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temperature (itself decreasing with time) will determine whether the CO 2 pressure declines

rapidly or slowly. It will also be of interest to determine whether dry carbonate formation
should still be playing a role in further reducing the pressure below its present value.

A question which has been raised repeatedly in the past regarding carbonate formation on
Mars -- whether wet or dry -- is: So, where is all this carbonate? Our calculations of the

process and significance of dry carbonate formation will help answer tiffs.

Booth and Kieffer's Experiment

In 1978, Booth and Kieffer examined carbonate growth within rock powders subjected to
Mars-like environment simulations (including the near absence of liquid water). Their

resulting yield was less than a monolayer of carbonate on about 40-micron grains in the span
of several days. The authors show that this reaction rate more than accounts (by several
orders of magnitude) for the destruction of 1 bar of CO 2 over geologic time (billions of
years). However, their study had a major limitation, namely that there is no reliable basis for
extrapolation, since less than a monolayer was formed, and the nature of the "rind" formed
was not closely examhled.

Present Theoretical Work

We attempted to find published results where the carbonate formed by CO 2 interaction
with silicates in the absence of liquid water was actually examined (e.g., with a scamfing

electron microscope), but without success. In the absence of experimental results, we
considered the worst case -- that in which the formation of a rind lhnits the effectiveness of

the rapid reaction reported by Booth and Kieffer. Namely, we considered the question: Is the
process (of dry carbonate formation) reaction-limited or diffusion-limited? To get an idea of
the actual diffusivity of CO 2 through carbonate, we extrapolated from experiments performed
at high temperature to obtain an estimate of diffusion. We found that the actual diffusivity is
eighteen orders of magnitude less than that for which the reaction rate limits the amount of

carbonate produced. This implies a diffusion-limited reaction. Indeed, Booth mid Kieffer's
dry carbonate growth rate could be too large by about nine orders of magnitude, and this
result would still old. In this sense, the reaction rate is irrelevant -- it is the diffusivity that
determines the rate of carbonate growth.

Over geologic time, this diffusion-lhnited dry carbonate formation is cap;_ble of forming
a layer -60 angstroms thick on silicate grains. For a l-ion regolith and 40-micron particles,
this means that ~0.05 bar of CO 2 can be stored. This is a very conservative estimate, since we
have probably underestimated the diffusivity mid we have assumed that the rind is nonporous.

Discussion: Application and Relevance of This Work

We model the evolution of CO 2 pressure by realizing that we can obtain an estimate of
diffusivity as a function of temperature from existing experimental data, and temperature as a
function of CO 2 pressure from published greenhouse models. This relationship is constrained
by the requirement that we get the right present pressure. Now, diffusivity is a very sensitive
function of temperature and as T decreases to the present mean annual temperature, the
diffusivity gets much smaller. The implication is that the current atmospheric pressure is
decreasing slowly compared to its previous evolution. Detailed results will be presented at
the conference.

Finally, in applying our results to current telescopic searches for carbonates on Mars,
note that if the carbonate is indeed produced in thin (<<l-micron) layers, then it will not be
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readily detectable in infrared observations. If carbonate is detected, as recently claimed, then
il is ancient carbonate produced during epochs of liquid water on the surface.


